
BridgeStan: Efficient in-memory access to the
methods of a Stan model
Edward A. Roualdes 1*¶, Brian Ward 2*, Bob Carpenter 2*, Adrian
Seyboldt 3, and Seth D. Axen 4

1 California State University, Chico 2 Center for Computational Mathematics, Flatiron Institute 3 PyMC
Labs 4 Cluster of Excellence Machine Learning: New Perspectives for Science, University of Tübingen ¶
Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05236

Software
• Review
• Repository
• Archive

Editor: Nikoleta Glynatsi
Reviewers:

• @salleuska
• @saumil-sh

Submitted: 10 January 2023
Published: 22 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Stan provides a probabilistic programming language in which users can code Bayesian models
(Carpenter et al., 2017; Stan Development Team, 2022). A Stan program is transpiled
to to a C++ class that links to the Stan math library to implement smooth, unconstrained
posterior log densities, gradients, and Hessians as well as constraining/unconstraining transforms.
Implementation is provided through automatic differentiation in the Stan math library (Carpenter
et al., 2015). BridgeStan provides in-memory access to the methods of Stan models through
Python, Julia, R, and Rust. This allows algorithm development in these languages with the
numerical efficiency and expressiveness of Stan models. Furthermore, these features are exposed
through a language-agnostic C API, allowing foreign function interfaces in other languages to
utilize BridgeStan with minimal additional development.

Statement of need
Stan was developed for applied statisticians working on real-world problems and has been used
by hundreds of thousands of researchers and practitioners across the social, biological, and
physical sciences, as well as engineering, education, sports, and finance. Stan provides several
state-of-the-art, gradient-based algorithms: full Bayesian inference with Hamiltonian Monte
Carlo, Laplace approximation based on L-BFGS optimization, and automatic differentiation
variational inference (ADVI).

In the statistical software environment R, Stan is heavily relied upon for development of applied
statistics packages. Using Google’s PageRank algorithm on the dependency graph (de Vries,
2014) amongst the 19,159 R packages listed on the Comprehensive R Archive Network (CRAN)
as of 2022-12-31, three R packages that exist solely to provide access to Stan rank quite
well: rstan ranks at number 70, rstantools 179, and rstanarm 502. Further, two Python
interfaces to Stan, pystan and cmdstanpy, both rank in the top 600 packages by downloads
on the Python Package Index (PyPI).

C++ can be cumbersome for algorithm prototyping. As such, developers have been requesting
ways to access Stan models for algorithm development in Python, R, and Julia. BridgeStan

answers this call, making it easy for algorithm developers to incorporate existing Stan models
in their evaluation, e.g., the dozens of diverse models with reference posteriors in posteriordb

(Magnusson et al., 2022). BridgeStan further aids algorithm development by leveraging the
functions in the Stan Math library, which are written to appropriately handle numerical issues
such as under/over-flow and sum-to-one constraints. Algorithm developers using BridgeStan

can thus focus more on their algorithms and less on their implementations. These benefits also

Roualdes et al. (2023). BridgeStan: Efficient in-memory access to the methods of a Stan model. Journal of Open Source Software, 8(87), 5236.
https://doi.org/10.21105/joss.05236.

1

https://orcid.org/0000-0002-8757-3463
https://orcid.org/0000-0002-9841-3342
https://orcid.org/0000-0002-2433-9688
https://orcid.org/0000-0002-4239-4541
https://orcid.org/0000-0003-3933-8247
https://doi.org/10.21105/joss.05236
https://github.com/openjournals/joss-reviews/issues/5236
https://github.com/roualdes/bridgestan
https://doi.org/10.5281/zenodo.8169248
https://nikoleta-v3.github.io
https://orcid.org/0000-0002-2943-3622
https://github.com/salleuska
https://github.com/saumil-sh
https://creativecommons.org/licenses/by/4.0/
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://github.com/stan-dev/posteriordb
https://doi.org/10.21105/joss.05236

ensure more precise and stable implementations of statistical algorithms, allowing for more fair
comparisons.

BridgeStan is an interface, written in C-compatible C++, between a Stan program and any
higher level language that exposes a C foreign function interface. Julia, Python, R, and
Rust each have C foreign function interfaces. Using memory allocated within such higher
level languages, BridgeStan provides computations of the log joint density function and
corresponding gradient of a Stan model, which is itself implemented using highly templated
C++ from the Stan math library. Using a memory-compatible C interface makes this possible
even if the host language (e.g., R) was compiled with a different compiler, something no prior
interface that exposed Stan’s log density calculations could allow.

Other software in the Stan ecosystem provides some overlapping features with BridgeStan.
For instance, rstan (Stan Development Team, 2023) provides functions log_prob and
grad_log_prob, which provide access to the log joint density and its gradient. Similarly,
httpstan (Riddell et al., 2021) offers log_prob and log_prob_grad. Such cases of similar
functionality are unfortunately limited. As of 2023-05-19, rstan via CRAN is still on Stan
version 2.21.0 (released 2019-10-18), and the development version of rstan, which is not
hosted on CRAN, is on Stan version 2.26.1 (released 2021-02-17), while the latest version of
Stan is on 2.32.2 (released 2023-05-15). Further, rstan is limited to the host language R. On
the other hand, httpstan is a Python package that offers a REST API, primarily targeting
the Stan algorithms, which allows some limited access to the methods of a Stan model. The
REST API may be used by languages other than Python but by design cannot take advantage
of direct memory access of the host language. Additionally, httpstan is not natively supported
on Windows operating systems. BridgeStan addresses these issues by providing a portable
and easy to maintain shim between any host language with a foreign function interface to C
and the core C++ of Stan.

Existing tools with similar automatic differentiation functionality include JAX (Bradbury et
al., 2018) and Turing.jl via the JuliaAD ecosystem (Ge et al., 2018). BridgeStan differs
from these tools by providing access to the existing, well-known DSL for modeling and highly
efficient CPU computation of the Stan ecosystem. The Stan community predominantly uses
CPU hardware, and since Stan has been tuned for CPU performance, BridgeStan is more
efficient than its competitors in implementing differentiable log densities on CPUs (Carpenter
et al., 2015; Radul et al., 2020; Tarek et al., 2020). Like the immutable Stan models they
interface, BridgeStan functions are thread-safe for parallel applications. They also support
all of the internal parallelization of Stan models, such as internal parallel map functions and
GPU-enabled matrix operations.

BridgeStan enables memory allocated in the host language (Julia, Python, R, or Rust),
to be reused within Stan, though any language with a C foreign function interface could
be similarly interfaced to access Stan methods. For instance, the BridgeStan function
log_density_gradient has as an optional output argument the array into which the gradient
will be stored. By avoiding unnecessary copies, BridgeStan is a zero-cost abstraction built
upon Stan’s math library. If no output argument is passed to log_density_gradient, then at
most one memory allocation, occuring in the host language, takes place.

Example
The probabilistic programming language Stan, together with its automatic differentiation tools,
enables parameterizations of otherwise numerically challenging distributions. Consider the
following Stan program, which encodes an isotropic multivariate Student-t distribution of
dimension 𝐷 and degrees of freedom 𝑑𝑓.

This parameterization1 of the Student-t distribution enables gradient-based Markov chain Monte
1See Wikipedia’s page on the Student’s t-distributionfor a brief introduction to this parameterization.

Roualdes et al. (2023). BridgeStan: Efficient in-memory access to the methods of a Stan model. Journal of Open Source Software, 8(87), 5236.
https://doi.org/10.21105/joss.05236.

2

https://en.wikipedia.org/wiki/Student%27s_t-distribution#Characterization
https://doi.org/10.21105/joss.05236

Carlo algorithms to capture the heaviness of the tails when 𝑑𝑓 is less than ∼ 30. Calculating
the gradient of the joint log density of this parameterization of the Student-t distribution is not
difficult, but it is cumbersome and time-consuming to encode in software. Since BridgeStan
uses Stan, users of BridgeStan can trust that their bespoke parameterizations of numerically
challenging distributions will be differentiated with thoroughly tested tools from Stan.

data {

int D;

real df;

}

transformed data {

vector[D] mu = rep_vector(0.0, D);

matrix[D, D] Sigma = identity_matrix(D);

real<lower=0.0> nu = 0.5 * df;

}

parameters {

vector[D] z;

vector<lower=0>[D] ig; // ig constrained so ig > 0

}

transformed parameters {

vector[D] x = z .* sqrt(ig);

}

model {

z ~ multi_normal(mu, Sigma);

ig ~ inv_gamma(nu, nu);

}

BridgeStan users can access the gradient of this model easily, allowing for simple implemen-
tations of sampling algorithms. In the below example, we show an implementation of the
Metropolis-adjusted Langevin algorithm (MALA) (Besag, 1994) built on BridgeStan.

import bridgestan as bs

import numpy as np

stan_model = "path/to/student-t.stan"

stan_data = "path/to/student-t.json"

model = bs.StanModel.from_stan_file(stan_model, stan_data)

D = model.param_unc_num()

M = 10000

def MALA(model, theta, epsilon=0.45):

def correction(theta_prime, theta, grad_theta):

x = theta_prime - theta - epsilon * grad_theta

return (-0.25 / epsilon) * x.dot(x)

lp, grad = model.log_density_gradient(theta)

theta_prop = (

theta

+ epsilon * grad

+ np.sqrt(2 * epsilon) * np.random.normal(size=model.param_unc_num())

)

lp_prop, grad_prop = model.log_density_gradient(theta_prop)

if np.log(np.random.random()) < lp_prop + correction(

theta, theta_prop, grad_prop

) - lp - correction(theta_prop, theta, grad):

return theta_prop

return theta

unc_draws = np.empty(shape=(M, D))

unc_draws[0] = MALA(model, np.random.normal(size=D))

for m in range(1, M):

unc_draws[m] = MALA(model, unc_draws[m - 1])

post processing: recover constrained/transformed parameters

draws = np.empty(shape=(M, model.param_num(include_tp=True, include_gq=True)))

for (i, draw) in enumerate(unc_draws):

draws[i] = model.param_constrain(draw, include_tp=True, include_gq=True)

Roualdes et al. (2023). BridgeStan: Efficient in-memory access to the methods of a Stan model. Journal of Open Source Software, 8(87), 5236.
https://doi.org/10.21105/joss.05236.

3

https://doi.org/10.21105/joss.05236

Conclusion
On the Stan Discourse forums, statistical algorithm developers have long asked for access to the
gradients and Hessians that underlie the statistical model of a Stan program. Examples include
requests on the Stan Discourse forums related to the phrase extract gradient or the software
from which BridgeStan is derived: Stan Model Server and ReddingStan. BridgeStan enables
access to these methods with a portable and in-memory solution. Further, because statistical
models are so easy to write in Stan, algorithm developers can write their model in common
statistical notation using the Stan programming language and then rely on the Stan math
library and its automatic differentiation toolset to more easily build advanced gradient-based
statistical inference algorithms. BridgeStan documentation and example programs are found
at https://roualdes.github.io/bridgestan/index.html.

Acknowledgements
Edward A. Roualdes received support from Flatiron Institute during the beginning of this
project. Seth D. Axen is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC number 2064/1 – Project
number 390727645.

References
Besag, J. (1994). Comments on ”Representations of knowledge in complex systems” by U.

Grenander and MI Miller. Journal of the Royal Statistical Society, Series B, 56(591-592),
4.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1).

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., & Betancourt, M. (2015).
The stan math library: Reverse-mode automatic differentiation in c++. arXiv Preprint
arXiv:1509.07164.

de Vries, A. (2014). Finding the essential R packages using the pagerank algorithm. https://
blog.revolutionanalytics.com/2014/12/a-reproducible-r-example-finding-the-most-popular-packages-using-the-pagerank-algorithm.
html

Ge, H., Xu, K., & Ghahramani, Z. (2018). Turing: A language for flexible probabilistic
inference. International Conference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, 1682–1690. http:
//proceedings.mlr.press/v84/ge18b.html

Magnusson, M., Bürkner, P., & Vehtari, A. (2022). posteriordb: a set of posteriors for
Bayesian inference and probabilistic programming (Version 0.4). https://github.com/
stan-dev/posteriordb

Radul, A., Patton, B., Maclaurin, D., Hoffman, M., & A Saurous, R. (2020). Automatically
batching control-intensive programs for modern accelerators. Proceedings of Machine
Learning and Systems, 2, 390–399.

Riddell, A., Hartikainen, A., & Carter, M. (2021). Httpstan (4.4.0). PyPI.

Roualdes et al. (2023). BridgeStan: Efficient in-memory access to the methods of a Stan model. Journal of Open Source Software, 8(87), 5236.
https://doi.org/10.21105/joss.05236.

4

https://discourse.mc-stan.org/
https://discourse.mc-stan.org/search?q=extract%20gradient
https://github.com/bob-carpenter/stan-model-server/
https://github.com/dmuck/redding-stan
https://roualdes.github.io/bridgestan/index.html
http://github.com/google/jax
http://github.com/google/jax
https://blog.revolutionanalytics.com/2014/12/a-reproducible-r-example-finding-the-most-popular-packages-using-the-pagerank-algorithm.html
https://blog.revolutionanalytics.com/2014/12/a-reproducible-r-example-finding-the-most-popular-packages-using-the-pagerank-algorithm.html
https://blog.revolutionanalytics.com/2014/12/a-reproducible-r-example-finding-the-most-popular-packages-using-the-pagerank-algorithm.html
http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
https://github.com/stan-dev/posteriordb
https://github.com/stan-dev/posteriordb
https://doi.org/10.21105/joss.05236

Stan Development Team. (2022). About Stan. https://mc-stan.org/

Stan Development Team. (2023). RStan: The R interface to Stan. https://mc-stan.org/

Tarek, M., Xu, K., Trapp, M., Ge, H., & Ghahramani, Z. (2020). DynamicPPL: Stan-like
speed for dynamic probabilistic models. arXiv Preprint arXiv:2002.02702.

Roualdes et al. (2023). BridgeStan: Efficient in-memory access to the methods of a Stan model. Journal of Open Source Software, 8(87), 5236.
https://doi.org/10.21105/joss.05236.

5

https://mc-stan.org/
https://mc-stan.org/
https://doi.org/10.21105/joss.05236

	Summary
	Statement of need
	Example
	Conclusion
	Acknowledgements
	References

