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Summary
Given a heterogeneous group of observations, researchers often try to find more homogenous
groups within them. Typical is the use of clustering algorithms determining these groups based
on statistical similarity. While there is an extensive range of algorithms to be chosen from, they
often share one specific limitation - the algorithm itself will not determine the optimal number
of clusters a group of observations shall be divided into. The solution is usually depending on
internal cluster validity measures, but those provide only limited insight and can result in a
suboptimal choice (Gagolewski et al., 2021). This paper presents a Python package named
clustergram offering tools to analyze the clustering solutions and visualize the behavior of
observations in relation to a tested range of options for the number of classes, enabling a
deeper understanding of the behavior of observations splitting into classes and better-informed
decisions on the optimal number of classes.

The situation the package is dealing with can be illustrated on one of the most commonly used
clustering algorithms, K-Means. The algorithm first sets a pre-defined number of random seeds
and attempts to split the data into the same number of classes, searching for the optimal seed
locations providing the best split between the groups. However, the number of classes needs to
be defined by a researcher and is usually unknown. The clustering solution is therefore created
for a range of viable solutions (usually from 2 to N) that are compared and assessed based on
various criteria, be it a so-called “elbow plot” of silhouette score looking for the “elbow” on a
curve or a related silhouette analysis, or using other evaluation metrics, with both former and
latter options often resulting in partitions that may not be relevant (Gagolewski et al., 2021).
Most of them have in common that they treat each clustering option separately, without a
relation between, e.g., when testing 3 and 4 clusters, the behavior of observations between
these two options is not considered. To alleviate the situation and shed more light on the
dynamics of reshuffling of observations between clusters, Schonlau (2002) proposed a new
visual method called “clustergram”.

Clustergrams take the shape of a hierarchical diagram displaying a range of clustering options
(number of clusters) on (usually) the X-axis and cluster centers for each solution on the Y-axis.
Furthermore, there is an indication of a number of observations shifting between clusters,
so we can see how large a portion of cluster A from a 2-cluster solution goes to cluster B
of a 3-cluster solution, for example. This visualization uncovers the hierarchical nature of
range-based series of clustering solutions and enables researchers to determine the optimal
number of classes based on the illustrated behavior of observations as shown in Figure 1, and
Figure 2 further explained below.

The Python package presented in this paper provides tools to create and explore cluster-
grams in Python based on a number of built-in clustering algorithms but also on external
input resulting from other algorithms. The API is organized around a single overarching
clustergram.Clustergram class designed around scikit-learn’s API style (Buitinck et al., 2013)
with initialization of the class with the specification of arguments and the fit method, making
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it familiar to existing users of scikit-learn (Pedregosa et al., 2011) and similarly-designed
packages. In its core, the class expects a selection of a range of solutions to be tested
(k_range) from 1 to N, a selection of clustering algorithm (method) and a specification of a
backend used for computation. Here, clustergram offers a choice between backends written
to run on a CPU (scikit-learn for K-Means, Mini-batch K-Means and Gaussian Mixture
Models, scipy (Virtanen et al., 2020) for hierarchical (or agglomerative) algorithms) or a
GPU (cuML (Raschka et al., 2020) for K-Means), where the GPU path is computing both
clustering and the underlying data for clustergram visualization on GPU, minimizing the need
of data transfer between both. Furthermore, suppose none of the built-in options is suited
for a set use case. In that case, the clustergram data structure can be created either from
original data and labels for individual cluster solutions (from_data() method) or from cluster
centers (from_centers() method), depending on the information obtainable from the selected
external clustering algorithm.

Figure 1: Clustergram based on the K-Means clustering algorithm as implemented in the scikit-learn
package based on Palmer penguins dataset (Horst et al. (2020)). The cluster centroids are showing the
non-weighted mean values as proposed in the original paper by Schonlau (2002).

Once the series of cluster solutions is generated, it is time to compute and generate clustergram
diagrams for plotting functionality. The package offers two different ways of computing
clustergram values. The first case shown in Figure 1 follows the original proposal by Schonlau
(2002) and uses the means of cluster centroids to plot on Y-axis. However, as later noted by
Galili (2010), using simple means does not necessarily result in the most readable clustergram.
Therefore, the default option is to use the means of cluster centroids weighted by the first
principal component derived from the complete dataset, shown in Figure 2 based on the same
set of clustering solutions. Moreover, weighting by any other principal component is also
available if a researcher needs further exploration. Due to the potential high computation
cost of principal components and weighted cluster centroids, all the values are cached once
computed, meaning that only the first plotting call triggers the computation.
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Figure 2: Clustergram based on the K-Means clustering algorithm as implemented in the scikit-learn
package based on Palmer penguins dataset (Horst et al. (2020)), together with the additional metrics of
cluster fit generated by the package. The cluster centroids are weighted by the first principal component
to enhance the distinction between the branches of the dendrogram.

The plotting is implemented in two different options, showing the same diagram but one as a
static matplotlib (Hunter, 2007) figure while the other as an interactive JavaScript-based
visualization based on bokeh (Bokeh Team, 2023). The latter is especially beneficial as it offers
direct links of cluster centroids within the diagram to individual labels allowing very granular
back-and-forth diagnostics of the clustering behavior.

Since the selection of an optimal number of classes is a non-trivial exercise and shall not, in
the ideal case, be left to a single method or metric, clustergram natively allows computation
of additional metrics of cluster fit (Silhouette score, Calinski-Harabasz score, Davies-Bouldin
score) directly from the main class using the implementation available in the scikit-learn,
while the direct access to the labels resulting from all clustering options allows easy computation
of any other similar metric.
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Statement of need
As the problem clustergram helps resolve is not closed, there is a need for additional methods
beyond the elbow plot and other traditionally used ways. It is clearly indicated by the constant
citation level of the original set of papers by Schonlau (Schonlau, 2002, 2004). Arguably, this
has been limited by the lack of ready-to-use implementation of the technique in the modern data
science pipelines as the Schonlau (2002)’s code has been written in 2002 for STATA. Another
implementation has been explored in a blog post by Galili (2010) experimenting with the
minimal (as well as unpackaged and unmaintained) R version, that was later incorporated in the
EcotoneFinder package (Bagnaro, 2021). Since the first release of clustergram in November
2020, the package has been used in at least seven academic publications, ranging from the
classification of geographical areas based on form and function (Arribas-Bel & Fleischmann,
2022; Fleischmann & Arribas-Bel, 2022; Samardzhiev et al., 2022), geodemographics (Yang et
al., 2022), clustering of the latent representation from convolutional neural networks (Singleton
et al., 2022), classification of high Arctic lakes (Urbański, 2022) to facility reliability assessment
(Stewart et al., 2022) and genomic data science (Ma et al., 2022). Since none of these
directly cite the software, it is likely an incomplete overview. While researchers can still use
the traditional set of metrics to estimate the optimal number of classes, none, including
clustergram, is the ultimate answer without any drawbacks. What makes clustergram unique is
the reflection of the dynamics of the sequence of solutions and the visualization of the behavior
of observations within it.
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