
Melissa: coordinating large-scale ensemble runs for
deep learning and sensitivity analyses
Marc Schouler 1, Robert Alexander Caulk 1, Lucas Meyer 1,2, Théophile
Terraz1, Christoph Conrads1, Sebastian Friedemann1, Achal Agarwal 1,
Juan Manuel Baldonado1, Bartłomiej Pogodziński3, Anna Sekuła 3,
Alejandro Ribes2, and Bruno Raffin1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, France 2 Industrial AI Laboratory SINCLAIR,
EDF Lab Paris-Saclay, France 3 Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań
Supercomputing and Networking Center

DOI: 10.21105/joss.05291

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @acrlakshman
• @NoujoudNader

Submitted: 17 February 2023
Published: 16 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
Large-scale ensemble runs typically consist of executing thousands of physical simulation
instances according to a range of different input parameters. These ensemble runs enable
sensitivity analyses, deep surrogate trainings, reinforcement learning, and data assimilation,
but they rely on volumes of data that are too large to store. For example, a recent data
assimilation ensemble study generated 1.3 PB of data (Yashiro et al., 2020). These enormous
volumes of data hinder scientific analyses in two ways. First, I/O is the slowest component
in supercomputers; the incongruence between slow read/write speeds compared to the rapid
generation of data leads to a degradation and plateau of performance. Second, file systems on
supercomputers are not designed to allocate such large volumes of data to singular studies. To
avoid this I/O limitation, scientists reduce their study size by running low resolution simulations
or downsampling output data in space and time. However, the I/O problem only becomes
more pronounced as the speed and size of supercomputers continues to advance faster than
I/O speeds of storage disks.

Summary
Melissa is a file avoiding, fault tolerant, and elastic framework, generalized to perform en-
semble runs such as large scale sensitivity analysis and large scale deep surrogate training
on supercomputers. Some of the largest Melissa studies so far employed up to 30k cores to
execute 80k parallel simulations while avoiding up to 288 TB of intermediate data storage (see
(Ribés et al., 2022)). These large-scale studies avoid intermediate file storage due to Melissa’s
“online” (also referred to as in-transit and on-the-fly) data handling approach. As shown in
Fig. 1, Melissa’s architecture relies on three interacting components, the launcher, the server,
and the client:

1. Melissa client: the parallel numerical simulation code turned into a client. Each client
sends its output to the server as soon as available. Clients are independent jobs.

2. Melissa server: a parallelized process in charge of processing the data upon arrival from
the distributed and parallelized clients (e.g., computing statistics or training a neural
network).

3. Melissa Launcher: the front-end Python script in charge of orchestrating the execution of
the study. This piece of code interacts directly with OpenMPI or with the cluster scheduler
(e.g., slurm or OAR) to submit and monitor the proper execution of all instances.

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

1

https://orcid.org/0000-0002-3708-4135
https://orcid.org/0000-0001-5618-8629
https://orcid.org/0000-0001-5386-5997
https://orcid.org/0000-0002-3216-4769
https://orcid.org/0000-0003-3524-3160
https://doi.org/10.21105/joss.05291
https://github.com/openjournals/joss-reviews/issues/5291
https://gitlab.inria.fr/melissa/melissa
https://doi.org/10.5281/zenodo.8046630
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/acrlakshman
https://github.com/NoujoudNader
https://creativecommons.org/licenses/by/4.0/
https://melissa.gitlabpages.inria.fr/melissa/
https://doi.org/10.21105/joss.05291


Figure 1: Melissa architecture. Specificities of sensitivity and deep learning applications appear side by
side.

The Melissa server component is designed to be specialized for various types of ensemble runs:

Sensitivity Analysis (melissa-sa)
Melissa’s sensitivity analysis server is built around two key concepts: iterative (sometimes also
called incremental) statistics algorithms and asynchronous client/server model for data transfer.
Simulation outputs are never stored on disk. Instead, they are sent via NxM communication
patterns from the simulations to a parallelized server (Fig. 1). This method of data aggregation
enables the calculation of rapid statistical fields in an iterative fashion, without storing any
data to disk. Avoiding disk storage opens up the ability to compute oblivious statistical maps
for all mesh elements, for every time step and on a full resolution study. Melissa comes with
iterative algorithms for computing various statistical quantities (e.g., mean, variance, skewness,
kurtosis, and Sobol indices) and can easily be extended with new algorithms.

Deep Surrogate Training (melissa-dl)
Melissa’s deep learning server adopts a similar philosophy. Clients communicate data in a
round-robin fashion to the parallelized server (Fig. 1). The multi-threaded server then puts
and pulls data samples in and out of a buffer (Fig. 2), which is used for building training
batches. Melissa can perform data distributed parallelism training on several GPUs, associating
a buffer to each of them. To ensure proper memory management during execution, samples are
selected and evicted according to a predefined policy. This strategy enables the online training
method shown in Fig. 2. Furthermore, the Melissa architecture is designed to accommodate
popular deep learning libraries such as PyTorch and Tensorflow.

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

2

https://pytorch.org/
https://www.tensorflow.org/
https://doi.org/10.21105/joss.05291


Figure 2: Overview of Melissa’s deep learning framework (Meyer et al., 2023)

Use in academia
The original Sensitivity Analysis framework was published by Terraz et al. (2017), which set a
foundation for a variety of subsequent studies. Ribés et al. (2019) used melissa for parameter
augmented ensembles of curves, Ribés & Raffin (2020) used Melissa to help demonstrate
challenges of in-situ analyses, and Friedemann & Raffin (2022) used the architecture of Melissa
to build data assimilation software. Tangential work includes Guilloteau et al. (2022), which
coupled Melissa with NixOS to demonstrate distributed environments. More recently, Melissa’s
Deep Surrogate training was used to demonstrate improved training compared to offline analogs
(Meyer et al., 2023).

State of the field
Melissa is unique in many ways, but there are a group of other open-source codes aiming to
help scientists manage large scale analyses on supercomputers. For example, Merlin (Merlin,
2022) and Radical Pilot (Merzky et al., 2021) are supercomputing tools designed to help
reduce friction in large scale ensemble runs dependent on file system I/O. Meanwhile, a group
of frameworks exist that are aimed at distributing Python processes across clusters including
Ray (Moritz et al., 2017) and Dask (Dask Development Team, 2016), but they do not support
MPI-based applications and are not file avoiding. Finally, a group of in-situ processing tools
exist that do not support ensemble runs including DataSpace (Docan et al., 2010), Decaf
(Yildiz et al., 2022), and Damaris (Dorier et al., 2012). Although all these software packages
are useful for particular applications, they do not fulfill all three main tasks Melissa was built
for: large scale data generation, scheduler handling, and file-avoiding data processing.

Using Melissa

Installing Melissa
Melissa includes online documentation geared for new and advanced users alike. For example,
installation instructions help users get started no matter which supercomputer they are working
on. The typical installation is done via a cmake command. However, a spack install is also
available.

Configuring Melissa
As highlighted in the documentation, running a Melissa analysis requires the user to:

1. Instrument the simulation code with the Melissa API (3 base calls: init, send, and
finalize) so it can become a Melissa client.

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

3

https://melissa.gitlabpages.inria.fr/melissa/
https://melissa.gitlabpages.inria.fr/melissa/install/
https://melissa.gitlabpages.inria.fr/melissa/new-use-case/
https://doi.org/10.21105/joss.05291


• Typically the calls to the melissa_send() are performed inside the simulation loop. For
example, each time step of a physical simulation may contain melissa_send() where
it sends the physical quantities associated with domain at that time-step. This data
will be the data that Melissa server collects and analyzes in an online fashion (iterative
statistics or online training).

• As of now, Melissa provides an API compatible with solvers developed in the most
popular HPC languages: C, Fortran, and Python.

2. Configure the analysis. This includes defining the design of experiment (i.e., how to draw
the parameters for each simulation execution), selecting which statistics to compute, or
specifying the Neural Network architecture, the training algorithm, and parameters in
case of deep-surrogate training.

• The Melissa interface comprises two components: the configuration file (config.json)
and the custom user class (custom_server.py). The configuration file is a json dictionary
that contains all the study controls (e.g., number of clients to launch, which statistics to
compute, batch_size, etc.) config.json also contains instructions on how to execute
the instrumented solver as well as all the custom launcher controls for the user’s specific
scheduler. Meanwhile, the custom_server.py is where a user customizes the machinery
inside Melissa. For example, the custom_server.py may include specific deep-learning
training loops/network architectures, custom iterative statistics, pre- and post-processing
steps for the data, intermediate logging, etc.

3. Start the Melissa launcher on the terminal or on the front-end of the supercomputer.
Melissa takes care of requesting resources to execute the server and runner, monitoring
the execution, and restarting failing components when necessary.

Running Melissa
After the user has instrumented their simulation code and configured their custom server, the
study is launched with a single command:

melissa-launcher -c config.json

Monitoring Melissa
Melissa also contains a variety of monitoring/logging features to help users track live studies
and post-processes completed studies. One feature is called the melissa monitor, which is
designed to run in terminals directly on supercomputers. This feature displays the number of
waiting, running, terminated, and failed jobs. Meanwhile, for deep-learning studies, Melissa
has tensorboard integration, which allows users to track the training loss and other custom
metrics in real-time.

Melissa test suite and CI
The Melissa source code contains a robust CI, which builds the source, builds/publishes the
documentation, runs unit tests, and runs full integration tests. This CI serves to maintain code
quality while advancing developments in an open-source fashion between a group of developers.

Examples and exhibits
Melissa was already successfully coupled with state-of-the-art PDE solvers (e.g., Code-Saturne,
FEniCS) and the source code provides ready to use examples of the heat equation and the
Lorenz system. These examples include training deep-learning surrogates using distributed
GPUs, and iterative statistics. Further, Melissa includes a fully reproducible online vs offline
deep learning comparison. Finally, if users seek active support, they are encouraged to join our
Discourse forum and ask questions to the development team.

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

4

https://gitlab.inria.fr/melissa/melissa/-/blob/JOSS_v2/examples/heat-pde/heat-pde-dl/config_mpi.json
https://gitlab.inria.fr/melissa/melissa/-/blob/JOSS_v2/examples/heat-pde/heat-pde-dl/heatpde_dl_server.py
https://melissa.gitlabpages.inria.fr/melissa/first-dl-study/
https://melissa.gitlabpages.inria.fr/melissa/monitoring-melissa/#using-the-melissa-monitor-command
https://melissa.gitlabpages.inria.fr/melissa/monitoring-melissa/#tensorboard-logging-for-deep-learning
https://gitlab.inria.fr/melissa/melissa/-/pipelines
https://www.code-saturne.org/cms/web/
https://fenicsproject.org/
https://gitlab.inria.fr/melissa/melissa/-/tree/JOSS_v2/examples/heat-pde
https://gitlab.inria.fr/melissa/melissa/-/tree/JOSS_v2/examples/lorenz
https://melissa.gitlabpages.inria.fr/melissa/online-vs-offline-demo/
https://melissa.discourse.group/
https://doi.org/10.21105/joss.05291


Acknowledgment
The development of Melissa was made possible thanks to several funding sources that include:

• EOCOE II: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 824158

• REGALE: This project has received funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No 956560

References
Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org

Docan, C., Parashar, M., & Klasky, S. (2010). Dataspaces: An interaction and coordination
framework for coupled simulation workflows. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, 25–36. https://doi.org/10.1145/
1851476.1851481

Dorier, M., Antoniu, G., Cappello, F., Snir, M., & Orf, L. (2012, September). Damaris: How
to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O. CLUSTER
2012 - IEEE International Conference on Cluster Computing. https://doi.org/10.1109/
CLUSTER.2012.26

Friedemann, S., & Raffin, B. (2022). An elastic framework for ensemble-based large-scale
data assimilation. The International Journal of High Performance Computing Applications,
36(4), 543–563. https://doi.org/10.1177/10943420221110507

Guilloteau, Q., Bleuzen, J., Poquet, M., & Richard, O. (2022). Painless transposition of repro-
ducible distributed environments with NixOS compose. 2022 IEEE International Conference
on Cluster Computing (CLUSTER), 1–12. https://doi.org/10.1109/CLUSTER51413.2022.
00051

Merlin. (2022). https://merlin.readthedocs.io/en/latest/index.html

Merzky, A., Turilli, M., Titov, M., Al-Saadi, A., & Jha, S. (2021). Design and performance
characterization of RADICAL-pilot on leadership-class platforms. CoRR, abs/2103.00091.
https://doi.org/10.1109/TPDS.2021.3105994

Meyer, L., Schouler, M., Caulk, R. A., Ribes, A., & Raffin, B. (2023). Training deep surrogate
models with large scale online learning. 2023 ICML International Conference of Machine
Learning, Accepted.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Paul, W., Jordan, M. I.,
& Stoica, I. (2017). Ray: A distributed framework for emerging AI applications. CoRR,
abs/1712.05889. http://arxiv.org/abs/1712.05889

Ribés, A., Pouderoux, J., & Iooss, B. (2019). A visual sensitivity analysis for parameter-
augmented ensembles of curves. Journal of Verification, Validation and Uncertainty
Quantification, 4(4). https://doi.org/10.1115/1.4046020

Ribés, A., & Raffin, B. (2020). The challenges of in situ analysis for multiple simulations.
ISAV 2020 - In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
1–6. https://doi.org/10.1145/3426462.3426468

Ribés, A., Terraz, T., Fournier, Y., Iooss, B., & Raffin, B. (2022). Unlocking large scale
uncertainty quantification with in transit iterative statistics. In H. Childs, J. C. Bennett, &
C. Garth (Eds.), In situ visualization for computational science (pp. 113–136). Springer
International Publishing. https://doi.org/10.1007/978-3-030-81627-8_6

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

5

https://www.eocoe.eu/
https://regale-project.eu/
https://dask.org
https://doi.org/10.1145/1851476.1851481
https://doi.org/10.1145/1851476.1851481
https://doi.org/10.1109/CLUSTER.2012.26
https://doi.org/10.1109/CLUSTER.2012.26
https://doi.org/10.1177/10943420221110507
https://doi.org/10.1109/CLUSTER51413.2022.00051
https://doi.org/10.1109/CLUSTER51413.2022.00051
https://merlin.readthedocs.io/en/latest/index.html
https://doi.org/10.1109/TPDS.2021.3105994
http://arxiv.org/abs/1712.05889
https://doi.org/10.1115/1.4046020
https://doi.org/10.1145/3426462.3426468
https://doi.org/10.1007/978-3-030-81627-8_6
https://doi.org/10.21105/joss.05291


Terraz, T., Ribes, A., Fournier, Y., Iooss, B., & Raffin, B. (2017). Melissa: Large scale in
transit sensitivity analysis avoiding intermediate files. The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC17), 1–14. https:
//hal.inria.fr/hal-01607479

Yashiro, H., Terasaki, K., Kawai, Y., Kudo, S., Miyoshi, T., Imamura, T., Minami, K., Inoue,
H., Nishiki, T., Saji, T., Satoh, M., & Tomita, H. (2020). A 1024-member ensemble
data assimilation with 3.5-km mesh global weather simulations. SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, 1–10.
https://doi.org/10.1109/SC41405.2020.00005

Yildiz, O., Dreher, M., & Peterka, T. (2022). Decaf: Decoupled dataflows for in situ workflows.
In H. Childs, J. C. Bennett, & C. Garth (Eds.), In situ visualization for computational
science (pp. 137–158). Springer International Publishing. ISBN: 978-3-030-81627-8

Schouler et al. (2023). Melissa: coordinating large-scale ensemble runs for deep learning and sensitivity analyses. Journal of Open Source Software,
8(86), 5291. https://doi.org/10.21105/joss.05291.

6

https://hal.inria.fr/hal-01607479
https://hal.inria.fr/hal-01607479
https://doi.org/10.1109/SC41405.2020.00005
https://doi.org/10.21105/joss.05291

	Statement of need
	Summary
	Sensitivity Analysis (melissa-sa)
	Deep Surrogate Training (melissa-dl)

	Use in academia
	State of the field
	Using Melissa
	Installing Melissa
	Configuring Melissa
	Running Melissa
	Monitoring Melissa
	Melissa test suite and CI
	Examples and exhibits

	Acknowledgment
	References

