
byteparsing: a functional parser combinator for mixed
ASCII/binary data

Johan Hidding 1*¶ and Pablo Rodríguez-Sánchez 1*

1 Netherlands eScience Center ¶ Corresponding author * These authors contributed equally.
DOI: 10.21105/joss.05293

Software
• Review
• Repository
• Archive

Editor: Aoife Hughes
Reviewers:

• @inakleinbottle
• @dvberkel

Submitted: 08 December 2022
Published: 25 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Byteparsing is a functional parser combinator for Python. It was originally motivated by the
problem of parsing OpenFOAM files. OpenFOAM1 is a free, open source computational fluid
dynamics software package whose input and output files contain both ASCII and binary data.
Other common formats combining ASCII and binary are PLY triangle data or PPM images2.
This makes them particularly hard to parse using traditional tools. Byteparsing is a flexible
tool capable of dealing with generic formats.

Statement of need
There are already a few accessible options for parsing and manipulating data in Python. For
instance:

• pyparsing is the de facto standard for text parsing in Python. It seems to have no
features for dealing with binary data though.

• construct deals mostly with pure binary data.
• Kaitai Struct and Antlr both require a large time investment to learn.

The major downside of the remaining binary parser Python packages we could find is that they
focus mostly either on parsing network traffic or on data structures that can be described in a
fixed declarative language.

Our research problem, namely, manipulating OpenFOAM files from Python, required a parser
with the following characteristics:

• Capable of dealing with files combining ASCII and binary.
• Easy to program, using concepts similar to those found in other functional parser

combinators like pyparsing.
• Composable and testable at all levels of complexity.
• Capable of dealing transparently with Python objects that support the buffer protocol

(i.e., memory mapped file access is trivially supported).
• Performant enough, considering the use case where we have small ASCII headers and

large contiguous blocks of floating point data.
• Compliant with best practices, such as automated unit testing and thorough documenta-

tion.

Byteparser is the solution we developed based on this list of requirements.
1https://www.openfoam.com/
2https://parallelwindfarms.github.io/byteparsing/advanced.html

Hidding, & Rodríguez-Sánchez. (2023). byteparsing: a functional parser combinator for mixed ASCII/binary data. Journal of Open Source Software,
8(84), 5293. https://doi.org/10.21105/joss.05293.

1

https://orcid.org/0000-0002-7550-1796
https://orcid.org/0000-0002-2855-940X
https://doi.org/10.21105/joss.05293
https://github.com/openjournals/joss-reviews/issues/5293
https://github.com/parallelwindfarms/byteparsing
https://doi.org/10.5281/zenodo.7839894
https://www.turing.ac.uk/people/researchers/aoife-hughes
https://orcid.org/0000-0002-4572-5828
https://github.com/inakleinbottle
https://github.com/dvberkel
https://creativecommons.org/licenses/by/4.0/
https://www.openfoam.com/
https://parallelwindfarms.github.io/byteparsing/advanced.html
https://doi.org/10.21105/joss.05293


A note on architecture
Writing functional parser combinators is a staple of functional languages like Haskell or Ocaml
(Frost & Launchbury, 1989; Hutton, 1992). The paper “Monadic Parsing in Haskell” (Hutton
& Meijer, 1998) gives a complete tutorial on how to write a basic recursive descent parser.
Most of what Hutton and Meijer teach carries over nicely to Python once we take care of a few
details. We’ve replaced some Haskell idioms by features that are considered more ‘pythonic’.

An extended description of the concept of functional parser combinators can be found in the
documentation3. Those readers more interested in starting working right away will probably
find our lists of examples4 very practical.

Conclusion
In research software it is unfortunately still quite common to encounter non-standard data
formats. For those data formats where a mix of ASCII and binary parsing is needed, Byteparsing
can make a useful addition to the existing landscape of parser libraries in Python. Development
of a parser using Byteparsing can be relatively quick, as it is easy to build up parsers from
smaller testable components.

Acknowledgements
This project was supported by funding from the Netherlands eScience Center and NWO as
part of the Joint Call for Energy Research, Project Number CSER.JCER.025. We also want to
acknowledge Dr. Nicolas Renaud for his support and suggestions.

References
Frost, R., & Launchbury, J. (1989). Constructing natural language interpreters in a lazy

functional language. The Computer Journal, 32(2), 108–121. https://doi.org/10.1093/
comjnl/32.2.108

Hutton, G. (1992). Higher-order functions for parsing. Journal of Functional Programming,
2(3), 323–343. https://doi.org/10.1017/S0956796800000411

Hutton, G., & Meijer, E. (1998). Monadic parsing in Haskell. Journal of Functional Program-
ming, 8(4), 437–444. https://doi.org/10.1017/S0956796898003050

3https://parallelwindfarms.github.io/byteparsing/functional.html
4https://parallelwindfarms.github.io/byteparsing/examples.html

Hidding, & Rodríguez-Sánchez. (2023). byteparsing: a functional parser combinator for mixed ASCII/binary data. Journal of Open Source Software,
8(84), 5293. https://doi.org/10.21105/joss.05293.

2

https://doi.org/10.1093/comjnl/32.2.108
https://doi.org/10.1093/comjnl/32.2.108
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1017/S0956796898003050
https://parallelwindfarms.github.io/byteparsing/functional.html
https://parallelwindfarms.github.io/byteparsing/examples.html
https://doi.org/10.21105/joss.05293

	Summary
	Statement of need
	A note on architecture

	Conclusion
	Acknowledgements
	References

