DOI: 10.21105/joss.05296

Software
= Review @0
= Repository &0
= Archive &0

Editor: Axel Donath 7
Reviewers:

= @maxnoe
= Otimj

Submitted: 09 March 2023

Published: 22 September 2023

License

Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

In partnership with

AlA AMERICAN
——+— ASTRONOMICAL
S socieTy

This article and software are linked

with research article DOI
10.3847,/1538-4357 /ace0bd,

published in the Astrophysical

Journal.

The Journal of Open Source Software

ndcube: Manipulating N-dimensional Astronomical
Data in Python

Daniel F. Ryan ® 129, Stuart Mumford © *3, Yash Sharma*, Ankit Kumar

Baruah®, Adwait Bhope ©°, Nabil Freij© "8, Laura A. Hayes ® 3, Will T.

Barnes @ 22, Baptiste Pellorce®!?, Richard O’Steen © !, Derek Homeier © 3,

J. Marcus Hughes © %, David Stansby ©!®, Albert Y. Shih® 12, and
Matthew J. West ® 14

1 University of Applied Sciences Northwest Switzerland, Switzerland 2 American University, USA 3
Aperio Software Ltd, UK 4 Meta Platforms Inc., UK 5 Workato Gmbh, Germany 6 Uptycs India Pvt.
Ltd., India 7 Lockheed Martin Solar and Astrophysics Laboratory, USA 8 Bay Area Environmental
Research Institute, USA 9 Claude Bernard Lyon 1 University, France 10 Institute of Theoretical
Astrophysics, Norway 11 Space Telescope Science Institute, USA 12 NASA Goddard Space Flight
Center, USA 13 European Space Agency, ESTEC 14 Southwest Research Institute, USA 15 Advanced
Research Computing Centre, University College London, UK 9 Corresponding author

Summary

ndcube is a free, open-source, community-developed Python package for inspecting, manip-
ulating, and visualizing n-dimensional coordinate-aware astronomical data. Its features are
agnostic to the number of data dimensions and the physical coordinate types they represent. Its
data classes link data and their coordinates and provide analysis methods to manipulate them
self-consistently. These aim to provide simple and intuitive ways of handling coordinate-aware
data, analogous to how users handle coordinate-agnostic data with arrays. ndcube requires
that coordinate transformations be expressed via the World Coordinate System (WCS), a
coordinate framework commonly used throughout astronomy. The WCS framework has multiple
implementations (e.g. FITS-WCS, gWCS, and others), each with a different incompatible API,
which makes workflows and derived tools non-transferable between implementations. ndcube
overcomes this by leveraging Astropy's WCS API (APE-14, Robitaille et al., 2018) which can
be wrapped around any underlying WCS implementation. This enables ndcube to use the
same API to interact with any set of WCS transformations. ndcube’s data-WCS coupling
allows users to analyze their data more easily and reliably, thus helping to boost their scientific
output.

Statement of Need

N-dimensional data sets are common in all areas of science and beyond. For example, a series
of images taken sequentially with a CCD camera can be stored as a single 3-D array with
two spatial axes and one temporal axis. In astronomy, the most commonly used framework
for translating between array element indices, and the location or time in the Universe being
observed is the World Coordinate System (WCS). WCS's ability to handle many different
physical types of coordinates (e.g. spatial, temporal, spectral, etc.) and their projections
onto a data array (e.g. right ascension and declination, helioprojective latitude and longitude,
etc.) make it a succinct, standardized and powerful way to relate array axes to the physical
coordinate types they represent.

*co-first author

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 1
https://doi.org/10.21105/joss.05296.


https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0002-0631-2393
https://doi.org/10.21105/joss.05296
https://github.com/openjournals/joss-reviews/issues/5296
https://github.com/sunpy/ndcube
https://doi.org/10.5281/zenodo.8126828
https://orcid.org/0000-0003-4568-7005
https://github.com/maxnoe
https://github.com/timj
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3847/1538-4357/ace0bd
https://doi.org/10.21105/joss.05296

JEISS

The Journal of Open Source Software

There are mature Python packages for handling N-D array operations — for example, NumPy
(Harris et al., 2020), and Dask (Dask Development Team, 2016) — and others for supporting
WOCS coordinate transformations — for example, Astropy (Astropy Collaboration et al., 2013,
2018, 2022), and gWCS (Dencheva et al., 2022). However, none treat data and coordinates
in a combined, self-consistent way. The closest alternative to ndcube is Xarray (Hoyer &
Hamman, 2017). However Xarray has been developed for the requirements and conventions
of the geosciences which, although similar to those of astronomy in concept, are sufficiently
different in construction to cause significant friction. Crucially, Xarray does not currently
support WCS coordinate transformations. Tools that do support WCS-based coordinate-aware
data analysis, such as the SunPy (Mumford et al., 2020) Map class for 2-D images of the Sun,
tend to have APIs specific to particular combinations of dimensions, physical types, coordinate
systems and WCS implementations. This limits their broader utility and makes the combined
analysis of different types of data more difficult. It also inhibits collaboration by erecting
technical barriers between sub-fields of astronomy.

ndcube overcomes these challenges via its design policy that all functionalities and APIs must
be agnostic to the number of dimensions and coordinate types they represent. Moreover,
ndcube’'s employment of the Astropy WCS API makes it agnostic to the underlying WCS
implementation.

The Role of ndcube and its Features

The ndcube package serves three specific purposes. First, it formalizes the NDCube 2 APl in soft-
ware via its abstract base classes (ABCs), NDCubeABC, ExtraCoordsABC and GlobalCoordsABC.
The NDCube 2 API is a standardized framework for inspecting and manipulating coordinate-
aware N-D astronomical data and is defined by 12th SunPy Enhancement Proposal (SEP-12,
Mumford & Ryan, 2020). A discussion of the philosophies underpinning the NDCube 2 API can
be found in Ryan et al. (2023). Second, the ndcube package implements the NDCube 2 API
in corresponding data and coordinate classes, NDCubeBase, ExtraCoords and GlobalCoords.
These are viable off-the-shelf tools for end users and developers who do not want to implement
the API themselves. Third, it provides additional support for coordinate-aware manipula-
tion and visualization of N-D astronomical data via three high-level data classes: NDCube,
NDCubeSequence and NDCollection. NDCube (note the different capitalization from the pack-
age name) inherits from NDCubeBase and so adheres to the NDCube 2 API but adds some
additional features, such as a default visualization suite. The other classes are designed to
handle multiple NDCube instances simultaneously.

The features in the ndcube package are designed to be practical tools for end users. But they
are also powerful bases upon which to build tools for specific types of data. This might be a
specific number and/or combination of physical types (spectrograms, image cubes, etc.), or
data from specific instruments or simulations. Thus, ndcube can enhance the productivity of
developers by centralizing the development and maintenance of the most useful and general
functionalities. This leaves more time for developing a greater range of tools for the community
and/or enables part-time developers to devote more effort to other aspects of their jobs.

High-level Data Classes

The three high-level data classes provided by the ndcube package are NDCube, NDCubeSequence
and NDCollection. NDCube requires that the data is stored in a single array object and described
by a set of WCS transformations. The array can be any object that exposes .dtype and .shape
attributes and can be sliced by the standard Python slicing APIl. Thus NDCube not only supports
NumPy arrays but also others such as Dask for distributed computing (Dask Development
Team, 2016), CuPy for GPU operations (Okuta et al., 2017), and others. NDCube leverages
the Astropy WCS API for interacting with and manipulating the WCS transformations. This
means NDCube can support any WCS implementation (e.g. FITS-WCS, gWCS, and others), so

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 2
https://doi.org/10.21105/joss.05296.


https://doi.org/10.21105/joss.05296

The Journal of Open Source Software

long as it's supplied in an Astropy-WCS-API-compliant object. The components of an NDCube
are supplied by the following keyword arguments and accessed via attributes of the same name.

= data: The data array. (Required)

= wcs: The primary set of coordinate transformations. (Required)

= uncertainty: an astropy.nddata.NDUncertainty object giving the uncertainty of each
element in the data array. (Optional)

= mask: a boolean array denoting which elements of the data array are reliable. A True
value implies the data is masked, or unreliable. (Optional)

= meta: an object for storing metadata, (e.g. a Python dictionary). (Optional)

= unit: the unit of the data. (Optional)

NDCube also supports additional coordinate information. See the subsection on Coordinate
Classes. NDCube provides several analysis methods such as slicing (by array indices), cropping
(by real-world coordinates), reprojecting to new WCS transformations, visualization, rebinning
data, arithmetic operations, and more. All these methods manipulate the data, coordinates,
and supporting data (e.g. uncertainties) simultaneously and self-consistently. This relieves
users of well-defined, but tedious and error-prone tasks.

NDCubeSequence is designed to handle multiple NDCube instances that are arranged in some
order. Cubes can be ordered along an additional axis to those represented by the cubes, for
example, a sequence of 2-D spatial images arranged along a 3rd time axis. In this case, users can
interact with the data as if it were a 3-D cube with a similar API to NDCube. Alternatively, the
cubes can be ordered along one of the cubes’ axes, for example, a sequence of tiles in an image
mosaic where each cube represents an adjacent region of the sky. NDCubeSequence provides
APIs for both the (N+1)-D and extended N-D paradigms, that are simultaneously available on
each NDCubeSequence instance. This enables users to switch between the paradigms without
reformatting or copying the underlying data. NDCubeSequence also provides various methods
to help with data analysis. These APIs are similar to NDCube wherever possible (e.g. for slicing
and visualization), to minimize friction between analyzing single and multiple cubes.

NDCollection allows unordered but related NDCube and NDCubeSequence objects to be linked,
similar to how a Python dictionary is used. However, in addition to dictionary-like features,
NDCollection allows axes of different cubes with the same lengths to be marked as ‘aligned".
This enables these axes on all constituent cubes to be sliced at the NDCollection level. One
application of this is linking derived data products, for example, a spectral image cube and
a Doppler map derived from one of its spectral lines. Marking both cubes’ spatial axes as
‘aligned’ and slicing the NDCollection rather than the two cubes separately, simplifies the
extraction of regions of interest and guarantees both cubes continue to represent the same
field of view.

More detailed discussion on the roles of the above data classes’ features and how to use them
can be found in Ryan et al. (2023) and the ndcube documentation (ndcube Developers, 2023).

Coordinate Classes

The ndcube package provides two coordinate classes, ExtraCoords and GlobalCoords.
ExtraCoords provides a mechanism for storing coordinate transformations that are supplemen-
tal to the primary WCS transformations. This can be very useful if, say, we have a spectral
image cube whose images were taken at slightly different times but whose WCS does not
include time. In this case, ExtraCoords can be used to associate an astropy.time.Time
object with the spectral axis without having to manually construct a new WCS which is a
potentially complicated task even for experienced users. ExtraCoords supports both functional
and lookup-table-based transformations. It can therefore also be used as an alternative set of
coordinate transformations to those in the primary WCS and used interchangeably.

By contrast, GlobalCoords supports scalar coordinates that apply to the whole NDCube rather
than any of its axes, for example, the timestamp of a 2-D image. Scalar coordinates are not

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 3
https://doi.org/10.21105/joss.05296.


https://doi.org/10.21105/joss.05296

The Journal of Open Source Software

supported by WCS because it requires all coordinates to be associated with at least one array
axis, hence the need for GlobalCoords. When an axis is dropped from an NDCube via slicing,
the values of the dropped coordinates at the relevant location along the dropped axis are
automatically added to the associated GlobalCoords object, for example, the timestamp of a
2-D image sliced from a 3-D space-space-time cube. Thus coordinate information is never lost
due to slicing.

NDCube objects are always instantiated with associated ExtraCoords and GlobalCoords objects,
even if empty. Users can then add and remove coordinates subsequently. For a more in-depth
discussion of ExtraCoords and GlobalCoords, see Ryan et al. (2023).

Community Applications of ndcube

The importance of the ndcube package is demonstrated by the fact that it is already a depen-
dency of various software tools that support current ground-based and satellite observatories.
These include the James Webb Space Telescope (JWST), Solar Orbiter, the Interface Region
Imaging Spectrograph (IRIS), Hinode, and the Daniel K. Inouye Solar Telescope (DKIST) via
the specutils (specutils Developers, 2023b, 2023a), jdaviz (JDADF-Developers et al., 2023),
sunraster (Ryan & et al, in prep.), irispy-Imsal (irispy-Imsal Developers, 2023b, 2023a), EISPAC
(EISPAC Developers, 2023b, 2023a) and DKIST user tools packages which all depend on
ndcube. ndcube is also used in the data pipeline of the PUNCH mission (Polarimeter to UNify
the Corona and Heliosphere, Deforest et al., 2022), scheduled for launch in 2025. In addition,
individual researchers are using the ndcube package in their own analysis workflows.

A network benefit of ndcube is that it standardizes the APIs for handling astronomical coordinate-
aware N-D data. Adoption across astronomy and heliophysics helps scientists to more easily
work with data from different missions and sub-communities. This can simplify multi-instrument
data analysis, foster inter-field collaborations, and promote scientific innovation.

Acknowledgements

We acknowledge financial support for ndcube from NASA's Heliophysics Data Environment
Enhancement program, the Daniel K. Inouye Solar Telescope, and Solar Orbiter/SPICE (grant
80NSSC19K1000). We also acknowledge the SunPy, Python in Heliophysics, and Astropy
communities for their contributions and support.

References

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L.,
Shupe, D. L., Patil, A. A., Corrales, L., Brasseur, C. E., Néthe, M., Donath, A., Tollerud,
E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A., Tocknell, J., Jamieson, W., ..
Astropy Project Contributors. (2022). The Astropy Project: Sustaining and Growing a
Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core
Package. Astrophysical Journal, 935(2), 167. https://doi.org/10.3847/1538-4357 /ac7cT74

Astropy Collaboration, Price-Whelan, A. M., Sipécz, B. M., Giinther, H. M., Lim, P. L.,
Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
VanderPlas, J. T., Bradley, L. D., Pérez-Suérez, D., de Val-Borro, M., Aldcroft, T. L.,
Cruz, K. L., Robitaille, T. P., Tollerud, E. J., .. Astropy Contributors. (2018). The
Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package.
Astronomical Journal, 156(3), 123. https://doi.org/10.3847/1538-3881 /aabc4f

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray,
E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley,
A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair,

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 4
https://doi.org/10.21105/joss.05296.


https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.21105/joss.05296

SS

The Journal of Open Source Software

P. H., .. Streicher, O. (2013). Astropy: A community Python package for astronomy.
Astronomy & Astrophysics, 558, A33. https://doi.org/10.1051/0004-6361/201322068

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org

Deforest, C., Killough, R., Gibson, S., Henry, A., Case, T., Beasley, M., Laurent, G., Colaninno,
R., Waltham, N., & Punch Science Team. (2022). Polarimeter to UNify the Corona
and Heliosphere (PUNCH): Science, Status, and Path to Flight. 2022 IEEE Aerospace
Conference, 1-11. https://doi.org/10.1109/AER053065.2022.9843340

Dencheva, N., Mumford, S., Cara, M., Bradley, L., perrygreenfield, D'Avella, D., Sipbcz, B., Lim,
P. L., Jamieson, W., Slavich, E., Shanahan, C., Davies, J., Earl, N., Burnett, Z., Simon, B.,
Tollerud, E., Deil, C., Streicher, O., Simpson, C., .. Geiger, Z. (2022). Spacetelescope/gwcs:
GWCS v 0.18.3 (Version 0.18.3). Zenodo. https://doi.org/10.5281/zenodo.7478201

EISPAC Developers. (2023a). EISPAC code-base. In GitHub Repository. GitHub. https:
//github.com/USNavalResearchLaboratory/eispac

EISPAC Developers. (2023b). EISPAC documentation. In ReadTheDocs. ReadTheDocs.
https://eispac.readthedocs.io/en/latest

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Rio, J. F. del, Wiebe, M., Peterson, P., .. Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). https://doi.org/10.5334 /jors.148

irispy-Imsal Developers. (2023a). Irispy-Imsal code-base. In GitHub Repository. GitHub.
https://github.com/LM-SAL /irispy-Imsal

irispy-Imsal Developers. (2023b). Irispy-Imsal documentation. In ReadTheDocs. ReadTheDocs.
https:/ /irispy-Imsal.readthedocs.io/en/v0.1.5/

JDADEF-Developers, Averbukh, J., Bradley, L., Buikhuizen, M., Busko, I., Cherinka, B., Conroy,
K., Earl, N., Fox, O., Geda, R., Jones, C., Karatay, H., Kotler, J., Lim, P. L., Morris, B.,
Nguyen, D., O'Steen, R., Ogaz, S., Ogle, P., .. Volfman, S. (2023). Jdaviz (Version 3.3.0).
Zenodo. https://doi.org/10.5281 /zenodo.7625637

Mumford, S., Freij, N., Christe, S., Ireland, J., Mayer, F., Hughitt, V., Shih, A., Ryan, D.,
Liedtke, S., Pérez-Suérez, D., Chakraborty, P., K, V., Inglis, A., Pattnaik, P., Sipécz,
B., Sharma, R., Leonard, A., Stansby, D., Hewett, R., .. Murray, S. (2020). SunPy:
A Python package for Solar Physics. Journal of Open Source Software, 5(46), 1832.
https://doi.org/10.21105/joss.01832

Mumford, S., & Ryan, D. F. (2020). SEP-0012: NDCube 2 API. In GitHub repository. GitHub.
https://github.com/sunpy/sunpy-SEP /blob/master/SEP-0012.md

ndcube Developers. (2023). Ndcube documentation. In ReadTheDocs. ReadTheDocs.
https://docs.sunpy.org/projects/ndcube/en/v2.1.1/

Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. (2017). CuPy: A NumPy-
Compatible library for NVIDIA GPU calculations. Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information
Processing Systems (NIPS). http://learningsys.org/nipsl7/assets/papers/paper_16.pdf

Robitaille, T., Tollerud, E., Mumford, S., & Ginsburg, A. (2018). Astropy Proposal for
Enhancement 14: A shared Python interface for World Coordinate Systems (APE 14).
https://doi.org/10.5281/zenodo.1188875

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 5
https://doi.org/10.21105/joss.05296.


https://doi.org/10.1051/0004-6361/201322068
https://dask.org
https://doi.org/10.1109/AERO53065.2022.9843340
https://doi.org/10.5281/zenodo.7478201
https://github.com/USNavalResearchLaboratory/eispac
https://github.com/USNavalResearchLaboratory/eispac
https://eispac.readthedocs.io/en/latest
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://github.com/LM-SAL/irispy-lmsal
https://irispy-lmsal.readthedocs.io/en/v0.1.5/
https://doi.org/10.5281/zenodo.7625637
https://doi.org/10.21105/joss.01832
https://github.com/sunpy/sunpy-SEP/blob/master/SEP-0012.md
https://docs.sunpy.org/projects/ndcube/en/v2.1.1/
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.5281/zenodo.1188875
https://doi.org/10.21105/joss.05296

@SS

The Journal of Open Source Software

Ryan, D., & et al. (in prep.). sunraster: Manipulating Solar Slit-spectrograph Observations in
Python. Journal of Open Source Software.

Ryan, D., Mumford, S., Barnes, W. T., Kumar Baruah, A., Bhope, A., Buchlin, E., Freij,
N., Ginsburg, A., Hayes, L. A., Homeier, D., Hughes, J. M., Lowder, C., O'Steen, R.,
Pellorce, B., Robitaille, T., Sharma, Y., Shih, A. Y., Tollerud, E., & West, M. J. (2023).
A Unified Framework for Manipulating N-dimensional Astronomical Data and Coordinate
Transformations in Python: The NDCube 2 & Astropy APE-14 WCS APlIs. Astrophysical
Journal. https://doi.org/10.3847/1538-4357 /aceObd

specutils Developers. (2023a). Specutils code. In GitHub Repository. GitHub. https:
//github.com /astropy /specutils

specutils Developers. (2023b). Specutils documentation. In ReadTheDocs. ReadTheDocs.
https://specutils.readthedocs.io/en/stable/

Ryan et al. (2023). ndcube: Manipulating N-dimensional Astronomical Data in Python. Journal of Open Source Software, 8(89), 5296. 6
https://doi.org/10.21105/joss.05296.


https://doi.org/10.3847/1538-4357/ace0bd
https://github.com/astropy/specutils
https://github.com/astropy/specutils
https://specutils.readthedocs.io/en/stable/
https://doi.org/10.21105/joss.05296

	Summary
	Statement of Need
	The Role of ndcube and its Features
	High-level Data Classes
	Coordinate Classes

	Community Applications of ndcube
	Acknowledgements
	References

