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Summary
Data-driven science requires reliable data generation, and in modern instrumentation software
plays a central role to achieve this goal. Computer-controlled experiments allow for complex
synchronization of sensors and actuators. Moreover, as it was already recognized decades ago,
they enable on-line analysis routines to steer the experiment in real time (Enke, 1982). When
combined with programming best practices, instrumentation software fosters reproducible,
traceable, and open science.

An important step in the development of instrumentation software has been the definition
of Virtual Instrument Software Architecture (VISA) (Cheij, 2002), which quickly became
the most common API for test and measurement and is widely used both in industry and
academia. It includes specifications for communication with resources over a variety of
interfaces such as GPIB, PXI, VXI, SERIAL, TCP/IP, and USB. VISA abstracts away the
(often complex) idiosyncrasies of those low-level protocols, so that the scientist can focus on
the instrument-specific command set.

The Python package PyVISA provides an easy-to-use interface to software libraries that imple-
ment the VISA standard, enabling communication between a host computer and instruments
or other devices.

Statement of need
PyVISA has become the de facto standard for instrument control in Python. At the heart of
every PyVISA program is a ResourceManager instance, which allows to list available resources
(e.g., devices, instruments, boards). Opening one of such devices returns a Resource instance
with methods to send and receives streams of data, control registers and device specific flags.
While this high-level API serves most use cases, PyVISA still provides a convenient way to make
low-level calls for those few applications that require it.

PyVISA was designed to be used in both simple acquisition scripts and also within large
and complex codebases. It takes care of resource allocation, cleaning, stream parsing, data
conversion, and provides introspection capabilities. Resource instances are fully configurable
in terms of termination characters and format of the data stream, defaulting to sensible values
while allowing full control if necessary. Logging is used extensively throughout the library to
help with debugging.
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Usage
PyVISA can be installed using pip or conda. PyVISA-py and PyVISA-sim can be installed using
the same tools. PyVISA currently supports Python 3.8+.

While the PyVISA documentation (The PyVISA authors, 2020a) provides a full description of
its API and several typical use cases, we provide here a few simple code samples to illustrate
the package. The first step is to create a ResourceManager, which can be used to list available
devices:

>>> import pyvisa

>>> rm = pyvisa.ResourceManager()

>>> rm.list_resources()

('ASRL1::INSTR', 'ASRL2::INSTR', 'USB0::0x0699::0x0363::C065089::INSTR')

We open a connection to the resource:

>>> osci = rm.open_resource('USB0::0x0699::0x0363::C065089::INSTR')

Basic methods for communication with a resource are write() and read(), which send and
receive data (as strings). As this is often performed together, the query() method provides
this with a single call.

Next we ask for an identification by sending the *IDN? command, which is defined in the IEEE
488.2 standard and also belongs to the standard commands for programmable instruments
(SCPI); most instruments support this command.

>>> osci.query("*IDN?")

TEKTRONIX,TDS 1002B,C102220,CF:91.1CT FV:v22.11\n

The instrument is a Tektronix oscilloscope. We set the channel 1 vertical scale to 100 mV/div
and request the curve on the display.

>>> osci.write("CH1:SCALE 100E-3")

>>> data = osci.query_ascii_values('CURV?')

PyVISA parses the instrument’s response and returns the data as a Python list containing
the values from the device.

This oscilloscope also supports binary data transfer. We activate this mode at the device with
two commands and then request the binary values to be returned in a NumPy array.

>>> osci.write('DAT:ENC RPB')

>>> osci.write('DAT:WID 1')

>>> data = osci.query_binary_values('CURV?',

                                    datatype='B',

                                    container=np.array)

Structure of PyVISA
Backends: To provide the main functionality for communication with external devices PyVISA

calls code in external libraries. Typically these are provided by vendors that implement the VISA
library specification. PyVISA is not limited to a specific VISA vendor, but is rather a frontend
for multiple backends. The default backend wraps the Interchangeable Virtual Instrumentation
(IVI) VISA library provided by vendors like National Instruments, Keysight VISA, R&S VISA,
tekVISA and others. Alternative backends have also been developed. For example, PyVISA-py
uses Python packages such as PySerial, PyUSB and others to create a VISA backend. This has
been very useful to avoid relying on proprietary libraries, and to support OS or architectures
not supported by commercial vendors. PyVISA-sim is a backend that provides limited support
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to simulated instruments, thereby allowing testing complex application even if the device is
not available.

The interface of PyVISA is organized in several layers providing different levels of abstraction:

Layer 1 (low level): provides bindings to a compiled library preserving the original function
names. The wrapper defines the argument types and response types of each function, as well
as the conversions between Python objects and foreign types. Some backends, like PyVISA-py,
do not define this layer as they rely on other Python packages. Direct access to these functions
is neither required nor recommended.

Layer 2 (mid level): provides a function-oriented Pythonic API with comprehensive and Python-
friendly documentation. Access to this layer is rarely needed, only used to control certain
specific aspects of the VISA library which are not implemented by the corresponding resource
class. In the default backend (which wraps the IVI-VISA binary library), these functions call the
low-level counterparts, adding some code to deal with type conversions for functions that return
values by reference. In other backends like PyVISA-py, the backend implements the protocols
defined in the VISA standard and calls other Python libraries (like PyUSB) to communicate.

Layer 3 (high level) defines the previously mentioned ResourceManager class and the Resource

class and its specific subclasses (GPIBInstrument, USBInstrument, etc). It also defines
VisaLibraryBase, which serves as a modular interchangeable abstraction layer. Specific
backends implement communication with devices in subclasses of VisaLibraryBase (e.g.
IVIVisaLibrary and PyVisaLibrary), and contain layer 2 functions as bound methods.

PyVISA also implements routines to parse and filter resources names as defined in the VISA
standard. Moreover, it provides functions to convert between data structures and data streams
used by most equipment. While these routines are found in many IVI binary libraries, providing
a pure Python version lowers the entry barrier to generate new backends.

Finally, at the very early stages of PyVISA development, it became clear that a command line
tool was necessary to help with bug reporting and community testing. Indeed, one of the
challenges when supporting users was reproducing the issue, given the broad range of software
and hardware being used with PyVISA. For tackling this problem, the visa command line tool
was born. visa info provides information about the running machine (OS, version, processor,
etc), Python interpreter (version, compiler), PyVISA and its backends, and the Python and
binary libraries it depends on. While gathering this information, it tries to instantiate all
backends for obtaining valuable information. visa shell provides an interactive text-based
session that allows listing resources, opening them, and sending and receiving messages.

However, this name of this tool conflicted with the visa package related to credit cards, so
visa info became pyvisa-info and visa shell became pyvisa-shell.

Future of PyVISA
Like other projects in the Python scientific ecosystem, PyVISA started and leveraged Python’s
success as a glue language (Oliphant, 2015), being a simple wrapper around NI-VISA. But
Python grew beyond, and so did PyVISA. One the biggest most recent additions to Python is
the native support to write concurrent code using the async/await syntax (Selivanov, 2015).
This is well-suited for IO-bound code with the need for concurrency, and most instrumentation
code fits this description. While IVI libraries have supported async reads and writes for a long
time, this has not reached most instrumentation code. Most applications are synchronous
or use the less appropriate multithreading or multiprocessing Python libraries. By providing
async/await versions of its functions and methods, PyVISA will allow to write safe, concurrent
instrumentation code even in complex programs.

However, evolving PyVISA is a slow process due to the difficulty to thoroughly test it. Typical
continuous integration (CI) systems cannot provide access to actual instruments to test
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against. Through a cooperation with Keysight, PyVISA developers now have access to a virtual
instrument that is more flexible to perform tests than a real instrument, however robust CI has
not yet been set up.
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