Summarize the main points of the document about Quasi-Monte Carlo methods in Python.
• Latin Hypercube Sampling (centered, strength 1 or 2).
• Optimize a sample by minimizing C^2 discrepancy or performing Lloyd-Max iterations,
• Fast numerical inverse methods to sample arbitrary univariate distributions with QMC
 (Baumgarten & Patel, 2022),
• QMC integration.

Before the release of SciPy 1.7.0, the need for these functions was partially met in the scientific
Python ecosystem by tutorials (e.g. blog posts) and niche packages, but the functions in SciPy
have several advantages:

• Popularity: With millions of downloads per month, SciPy is one of the most downloaded
 scientific Python packages. New features immediately reach a wide range of users from
 all fields.
• Performance: The low-level functions are written in compiled languages such as Cython
 and optimized for speed and efficiency.
• Consistency: The APIs comply with the high standards of SciPy, function API reference
 and tutorials are thorough, and the interfaces share common features complementing
 other SciPy functions.
• Quality: As with all SciPy code, these functions were rigorously peer-reviewed for code
 quality and are extensively unit-tested. In addition, the implementations were produced
 in collaboration with the foremost experts in the QMC field.

Since the first release of all these new features, we have seen other libraries add support for
and rely on SciPy’s implementations, e.g. Optuna (Ishikawa et al., 2022) and SALib (Roy
& Iwanaga, 2022).

Acknowledgements

The authors thank professors Sergei Kucherenko (Imperial College London) and Fred Hickernell
(Illinois Institute of Technology) for helpful discussions. The SciPy maintainer team provided
support and help regarding the design and integration, notably Ralf Gommers (Quansight) and
Tyler J. Reddy (Los Alamos National Laboratory).

References

Baumgarten, Christoph, & Patel, Tirth. (2022). Automatic random variate generation
in Python. In Meghann Agarwal, Chris Calloway, Dillon Niederhut, & David Shupe
(Eds.), Proceedings of the 21st Python in Science Conference (pp. 46–51).
https://doi.org/10.25080/majora-212e5952-007

GitHub. https://github.com/optuna/optuna/pull/2423

for Industrial; Applied Mathematics. https://doi.org/10.1137/1.9781611970081

domains/mc/

1007/978-3-030-98319-2_4

module with quasi Monte Carlo functionality. In GitHub pull request. GitHub. https:
//github.com/scipy/scipy/pull/10844

GitHub. https://github.com/SALib/SALib/pull/519