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Summary
Geometry parameterization is a key challenge in shape optimization. Parameterizations must
accurately capture the design intent and perform well in optimization. In multidisciplinary design
optimization (MDO), the parameterization must additionally represent the shape consistently
across each discipline.

pyGeo is a geometry package for three-dimensional shape manipulation tailored for aerodynamic
and multidisciplinary design optimization. It provides several methods for geometry parame-
terization, geometric constraints, and utility functions for geometry manipulation. pyGeo
computes derivatives for all parameterization methods and constraints, facilitating efficient
gradient-based optimization.

Features

Integrations
pyGeo is the geometry manipulation engine within the MDO of Aircraft Configurations at High
Fidelity (MACH) framework (Kenway et al., 2014; Kenway & Martins, 2014), specializing in
high-fidelity aerostructural optimization. pyGeo can be used as a stand-alone package and is
integrated into MPhys1, a more general framework for high-fidelity multiphysics problems built
with OpenMDAO (Gray et al., 2019). MACH and MPhys use pyOptSparse (Wu et al., 2020)
to interface with optimization algorithms.

pyGeo’s interface for design variables and constraints is independent of which disciplinary
models access the geometry. This means that pyGeo can interact with different disciplines (such
as structures and aerodynamics) in the same way. This also facilitates a direct comparison of
the behavior or performance of two alternative models for a discipline using the same geometry
parameterization (Adler et al., 2022).

Geometry Parameterization with pyGeo
pyGeo contains several options for parameterizing geometry: variations on the free-form de-
formation (FFD) method, interfaces to external parametric modeling tools, and an analytic
parameterization. Because each parameterization method uses a common interface for interact-
ing with the rest of the MACH framework, any surface parameterization can be used in place
of another within an optimization setup (Hajdik et al., 2023). The choice of parameterization

1https://github.com/OpenMDAO/mphys
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depends on the user’s experience, the geometry details, and whether the user needs the final
design in a specific format.

Free-form Deformation

The FFD method (Sederberg & Parry, 1986) is one of the most popular three-dimensional
geometry parameterization approaches (Zhang et al., 2018). This approach embeds the entire
reference geometry in a parameterized volume. The set of control points that determines the
shape of the volume is displaced to manipulate the points inside. The user can have a high
degree of control over the geometry by selecting different control point densities and locations.

Individual control points can be moved to obtain local shape modifications. In pyGeo, these
are referred to as local design variables because a single control point is affected. Conversely,
it is also common to define geometric operations involving a collection of control points across
the entire FFD block. These are referred to as global design variables in pyGeo. For example,
wing twist variables can be defined as rotations of the control points about a reference axis
that runs along the wing. Figure 1 shows a few common planform design variables for an
aircraft wing.

Design variables formulated from groupings of FFD control points often exhibit ill-conditioning.
A parameterization based on singular value decomposition is also possible within pyGeo to
alleviate this issue (Wu et al., 2022).

Twist Taper Dihedral

Figure 1: Examples of common wing planform design variables.

In addition to the basic FFD implementation, pyGeo offers two additional features: hierarchical
FFD and multi-component FFD.

Hierarchical FFD

FFD objects can be organized in a hierarchical structure within pyGeo. Dependent, “child”
FFD blocks can be embedded in the main, “parent” FFD block to enable modifications on a
subset of the entire geometry. pyGeo first propagates the parent deformations to both the
geometry and the child control points and then propagates the deformations of the child
control points to their subset of the geometry. One of the advantages of using this approach is
that each FFD block can have its own independent reference axis to be used for global design
variables such as rotations and scaling. Figure 2 shows a case where the parent FFD block
is used to manipulate the shape of a blended wing body aircraft while its control surface is
deformed using a child FFD block.
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Figure 2: Example of parameterization through parent-child FFD blocks (Lyu & Martins, 2014).

Multi-component FFD

The basic FFD implementation lacks flexibility when the geometry has intersecting components.
In such cases, pyGeo can parameterize each component using FFD and ensure a watertight
surface representation at the component intersections using an inverse-distance surface defor-
mation method (Yildirim et al., 2021). Figure 3 shows an example of a component-based FFD
setup for a supersonic transport aircraft.

Figure 3: Example of FFD parameterization with intersecting components (Seraj & Martins, 2022).

Parametric Geometry Tools

pyGeo contains interfaces to two parametric geometry tools, the Engineering Sketch Pad (ESP)
(Haimes & Dannenhoffer, 2013) and OpenVSP (McDonald & Gloudemans, 2022). ESP is
CAD-based, while OpenVSP is a conceptual design tool. The two packages have different
capabilities, but both directly define the geometry with design variables, and the created
geometry can be used in external analysis tools.

pyGeo interfaces with ESP and OpenVSP in similar ways. In both cases, pyGeo takes an
instance of the model, and its points are associated with coordinates in a mesh from a solver
in the MACH framework. For ESP (Figure 4) and OpenVSP models (Figure 5), the pyGeo
interface to the respective software stores the model in a form usable within the MACH
framework and updates it as design variables are changed throughout the optimization.
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Figure 4: Example of ESP models of hydrogen tanks used through pyGeo (Brelje & Martins, 2021).

Figure 5: Example of an OpenVSP aircraft model used through OpenVSP’s pyGeo interface (Yildirim et
al., 2022).

Class Shape Transformation

The class shape transformation (CST) (Kulfan, 2008) is a popular airfoil parameterization.
It generates a shape using Bernstein polynomials to scale a class function, which is most
often a base airfoil shape. pyGeo contains an implementation of this airfoil parameterization
that supports design variables for the Bernstein polynomial weightings, the class function
parameters, and the airfoil chord length. pyGeo’s CST implementation can only be used for
2D problems, such as airfoil optimization (Figure 6).

Figure 6: Airfoil defined by three CST coefficients on each surface undergoing a perturbation in one
Bernstein polynomial.

Constraints
pyGeo also includes geometric constraints to prevent geometrically undesirable designs. The
most commonly-used class of geometry constraints in pyGeo involves tracking one or more
linear dimensions on the optimized object’s surface. These constraints are created by specifying
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a single point, a line, or an array of points, along with a normal direction, then computing
two line-surface intersection points. Some commonly used geometric constraints in shape
optimization, such as thickness, area, and volume constraints (Figure 7) can be computed
using variations on this approach, which is computationally cheap and robust (Brelje et al.,
2020).

2D thickness

Point thickness 

Cross-sectional area

Total volume

1D thickness

Figure 7: Thickness and volume constraints demonstrated on an wing section (Brelje et al., 2020).

If a more complex geometry needs to be integrated into an optimized surface, pyGeo supports
an alternative geometric constraint formulation based on arbitrary triangulated surfaces as
illustrated in Figure 8 (Brelje et al., 2020).

Figure 8: Triangulated surface constraint used to optimize an aeroshell around a complex geometry
(Brelje et al., 2020).

Parallelism
pyGeo can optionally work under distributed memory parallelism using MPI (Message Passing
Interface), which is required when interfacing with large-scale computational fluid dynamics
(CFD) applications. For example, the computational mesh may be partitioned and distributed
among many processors by the CFD solver, and each processor may be aware of only its portion
of the mesh. pyGeo can handle such scenarios by independently manipulating the geometry on
each processor and aggregating the constraints across all processors when communicating with
the optimizer.

Derivative Computation
In addition to geometry manipulation and constraints, pyGeo can compute derivatives of these
operations with respect to design variables. For the geometric deformation, pyGeo can compute
the Jacobian matrix

d𝑋𝑠
d𝑥

,

where 𝑋𝑠 is the vector of surface mesh coordinates, and 𝑥 is the vector of geometric design
variables.

Similarly, pyGeo can compute the constraint Jacobian matrix

d𝑔
d𝑥

,
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where 𝑔 is the vector of geometric constraints.

For the FFD parameterization, these derivatives are computed using analytic methods (Martins
& Ning, 2021, sec. 6.6) and the complex-step method (Martins et al., 2003). For the interfaces
to OpenVSP and ESP, the derivatives are computed with parallel finite differences. The CST
derivatives are computed analytically.

Statement of Need
Few open-source packages exist with comparable functionalities. To the authors’ best knowledge,
the only other open-source CFD-based optimization framework that contains a geometry
parameterization method is SU2 (Economon et al., 2016). It supports Hicks–Henne bump
functions (Hicks & Henne, 1978) for airfoil optimizations and the FFD method for 3D cases.
However, this geometry parameterization cannot be used with other solvers (aerodynamic or
otherwise) because it is tightly integrated into SU2.

While both OpenVSP and ESP can be used directly in optimization without using pyGeo, they
lack the capabilities needed for high-fidelity MDO when used as stand-alone tools. pyGeo
fills these gaps through parallelism, efficient gradients, and geometric constraints. It keeps
OpenVSP and ESP in the optimization loop and provides a standard interface to these tools
for use with external solvers.

pyGeo is maintained and developed by the MDO Lab2 at the University of Michigan and is
actively used for MDO applications in research and industry. Having different parameterization
choices in pyGeo has been useful because the best parameterization depends on the type of
problem. pyGeo’s standard FFD implementation is the most commonly used parameterization
(Bons et al., 2019; Kenway & Martins, 2014). The hierarchical FFD method was used to
optimize a blended wing body aircraft (Lyu & Martins, 2014), a hydrofoil (Liao et al., 2021),
and a wind turbine (Madsen et al., 2019). The method for using multiple FFD blocks has
been used to optimize a conventional aircraft (Yildirim et al., 2021), a T-shaped hydrofoil
(Liao et al., 2022), and a supersonic transport aircraft (Seraj & Martins, 2022). The interface
to ESP made it possible to parameterize hydrogen tanks within a combined aerostructural
and packaging optimization (Brelje & Martins, 2021). pyGeo’s OpenVSP interface was used
in aeropropulsive optimizations (Yildirim et al., 2022). The implementation of CST airfoil
parameterization was used to compare methods for airfoil optimization (Adler et al., 2022).
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