
pyGeo: A geometry package for multidisciplinary
design optimization
Hannah M. Hajdik 1, Anil Yildirim 1, Neil Wu 1, Benjamin J. Brelje 1,
Sabet Seraj 1, Marco Mangano 1, Joshua L. Anibal 1, Eirikur
Jonsson 1, Eytan J. Adler 1, Charles A. Mader 1, Gaetan K. W.
Kenway 1, and Joaquim R. R. A. Martins 1

1 Department of Aerospace Engineering, University of Michigan
DOI: 10.21105/joss.05319

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @HaoZeke
• @zhaowei0566

Submitted: 09 March 2023
Published: 19 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Geometry parameterization is a key challenge in shape optimization. Parameterizations must
accurately capture the design intent and perform well in optimization. In multidisciplinary design
optimization (MDO), the parameterization must additionally represent the shape consistently
across each discipline.

pyGeo is a geometry package for three-dimensional shape manipulation tailored for aerodynamic
and multidisciplinary design optimization. It provides several methods for geometry parame-
terization, geometric constraints, and utility functions for geometry manipulation. pyGeo
computes derivatives for all parameterization methods and constraints, facilitating efficient
gradient-based optimization.

Features

Integrations
pyGeo is the geometry manipulation engine within the MDO of Aircraft Configurations at High
Fidelity (MACH) framework (Kenway et al., 2014; Kenway & Martins, 2014), specializing in
high-fidelity aerostructural optimization. pyGeo can be used as a stand-alone package and is
integrated into MPhys1, a more general framework for high-fidelity multiphysics problems built
with OpenMDAO (Gray et al., 2019). MACH and MPhys use pyOptSparse (Wu et al., 2020)
to interface with optimization algorithms.

pyGeo’s interface for design variables and constraints is independent of which disciplinary
models access the geometry. This means that pyGeo can interact with different disciplines (such
as structures and aerodynamics) in the same way. This also facilitates a direct comparison of
the behavior or performance of two alternative models for a discipline using the same geometry
parameterization (Adler et al., 2022).

Geometry Parameterization with pyGeo
pyGeo contains several options for parameterizing geometry: variations on the free-form de-
formation (FFD) method, interfaces to external parametric modeling tools, and an analytic
parameterization. Because each parameterization method uses a common interface for interact-
ing with the rest of the MACH framework, any surface parameterization can be used in place
of another within an optimization setup (Hajdik et al., 2023). The choice of parameterization

1https://github.com/OpenMDAO/mphys

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

1

https://orcid.org/0000-0002-5103-7159
https://orcid.org/0000-0002-1814-9191
https://orcid.org/0000-0001-8856-9661
https://orcid.org/0000-0002-9819-3028
https://orcid.org/0000-0002-7364-0071
https://orcid.org/0000-0001-8495-3578
https://orcid.org/0000-0002-7795-2523
https://orcid.org/0000-0002-5166-3889
https://orcid.org/0000-0002-8716-1805
https://orcid.org/0000-0002-2744-1151
https://orcid.org/0000-0003-1352-5458
https://orcid.org/0000-0003-2143-1478
https://doi.org/10.21105/joss.05319
https://github.com/openjournals/joss-reviews/issues/5319
https://github.com/mdolab/pygeo
https://doi.org/10.5281/zenodo.8027706
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/HaoZeke
https://github.com/zhaowei0566
https://creativecommons.org/licenses/by/4.0/
https://github.com/OpenMDAO/mphys
https://doi.org/10.21105/joss.05319


depends on the user’s experience, the geometry details, and whether the user needs the final
design in a specific format.

Free-form Deformation

The FFD method (Sederberg & Parry, 1986) is one of the most popular three-dimensional
geometry parameterization approaches (Zhang et al., 2018). This approach embeds the entire
reference geometry in a parameterized volume. The set of control points that determines the
shape of the volume is displaced to manipulate the points inside. The user can have a high
degree of control over the geometry by selecting different control point densities and locations.

Individual control points can be moved to obtain local shape modifications. In pyGeo, these
are referred to as local design variables because a single control point is affected. Conversely,
it is also common to define geometric operations involving a collection of control points across
the entire FFD block. These are referred to as global design variables in pyGeo. For example,
wing twist variables can be defined as rotations of the control points about a reference axis
that runs along the wing. Figure 1 shows a few common planform design variables for an
aircraft wing.

Design variables formulated from groupings of FFD control points often exhibit ill-conditioning.
A parameterization based on singular value decomposition is also possible within pyGeo to
alleviate this issue (Wu et al., 2022).

Twist Taper Dihedral

Figure 1: Examples of common wing planform design variables.

In addition to the basic FFD implementation, pyGeo offers two additional features: hierarchical
FFD and multi-component FFD.

Hierarchical FFD

FFD objects can be organized in a hierarchical structure within pyGeo. Dependent, “child”
FFD blocks can be embedded in the main, “parent” FFD block to enable modifications on a
subset of the entire geometry. pyGeo first propagates the parent deformations to both the
geometry and the child control points and then propagates the deformations of the child
control points to their subset of the geometry. One of the advantages of using this approach is
that each FFD block can have its own independent reference axis to be used for global design
variables such as rotations and scaling. Figure 2 shows a case where the parent FFD block
is used to manipulate the shape of a blended wing body aircraft while its control surface is
deformed using a child FFD block.

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

2

https://doi.org/10.21105/joss.05319


Figure 2: Example of parameterization through parent-child FFD blocks (Lyu & Martins, 2014).

Multi-component FFD

The basic FFD implementation lacks flexibility when the geometry has intersecting components.
In such cases, pyGeo can parameterize each component using FFD and ensure a watertight
surface representation at the component intersections using an inverse-distance surface defor-
mation method (Yildirim et al., 2021). Figure 3 shows an example of a component-based FFD
setup for a supersonic transport aircraft.

Figure 3: Example of FFD parameterization with intersecting components (Seraj & Martins, 2022).

Parametric Geometry Tools

pyGeo contains interfaces to two parametric geometry tools, the Engineering Sketch Pad (ESP)
(Haimes & Dannenhoffer, 2013) and OpenVSP (McDonald & Gloudemans, 2022). ESP is
CAD-based, while OpenVSP is a conceptual design tool. The two packages have different
capabilities, but both directly define the geometry with design variables, and the created
geometry can be used in external analysis tools.

pyGeo interfaces with ESP and OpenVSP in similar ways. In both cases, pyGeo takes an
instance of the model, and its points are associated with coordinates in a mesh from a solver
in the MACH framework. For ESP (Figure 4) and OpenVSP models (Figure 5), the pyGeo
interface to the respective software stores the model in a form usable within the MACH
framework and updates it as design variables are changed throughout the optimization.

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

3

https://doi.org/10.21105/joss.05319


Figure 4: Example of ESP models of hydrogen tanks used through pyGeo (Brelje & Martins, 2021).

Figure 5: Example of an OpenVSP aircraft model used through OpenVSP’s pyGeo interface (Yildirim et
al., 2022).

Class Shape Transformation

The class shape transformation (CST) (Kulfan, 2008) is a popular airfoil parameterization.
It generates a shape using Bernstein polynomials to scale a class function, which is most
often a base airfoil shape. pyGeo contains an implementation of this airfoil parameterization
that supports design variables for the Bernstein polynomial weightings, the class function
parameters, and the airfoil chord length. pyGeo’s CST implementation can only be used for
2D problems, such as airfoil optimization (Figure 6).

Figure 6: Airfoil defined by three CST coefficients on each surface undergoing a perturbation in one
Bernstein polynomial.

Constraints
pyGeo also includes geometric constraints to prevent geometrically undesirable designs. The
most commonly-used class of geometry constraints in pyGeo involves tracking one or more
linear dimensions on the optimized object’s surface. These constraints are created by specifying

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

4

https://doi.org/10.21105/joss.05319


a single point, a line, or an array of points, along with a normal direction, then computing
two line-surface intersection points. Some commonly used geometric constraints in shape
optimization, such as thickness, area, and volume constraints (Figure 7) can be computed
using variations on this approach, which is computationally cheap and robust (Brelje et al.,
2020).

2D thickness

Point thickness 

Cross-sectional area

Total volume

1D thickness

Figure 7: Thickness and volume constraints demonstrated on an wing section (Brelje et al., 2020).

If a more complex geometry needs to be integrated into an optimized surface, pyGeo supports
an alternative geometric constraint formulation based on arbitrary triangulated surfaces as
illustrated in Figure 8 (Brelje et al., 2020).

Figure 8: Triangulated surface constraint used to optimize an aeroshell around a complex geometry
(Brelje et al., 2020).

Parallelism
pyGeo can optionally work under distributed memory parallelism using MPI (Message Passing
Interface), which is required when interfacing with large-scale computational fluid dynamics
(CFD) applications. For example, the computational mesh may be partitioned and distributed
among many processors by the CFD solver, and each processor may be aware of only its portion
of the mesh. pyGeo can handle such scenarios by independently manipulating the geometry on
each processor and aggregating the constraints across all processors when communicating with
the optimizer.

Derivative Computation
In addition to geometry manipulation and constraints, pyGeo can compute derivatives of these
operations with respect to design variables. For the geometric deformation, pyGeo can compute
the Jacobian matrix

d𝑋𝑠
d𝑥

,

where 𝑋𝑠 is the vector of surface mesh coordinates, and 𝑥 is the vector of geometric design
variables.

Similarly, pyGeo can compute the constraint Jacobian matrix

d𝑔
d𝑥

,

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

5

https://doi.org/10.21105/joss.05319


where 𝑔 is the vector of geometric constraints.

For the FFD parameterization, these derivatives are computed using analytic methods (Martins
& Ning, 2021, sec. 6.6) and the complex-step method (Martins et al., 2003). For the interfaces
to OpenVSP and ESP, the derivatives are computed with parallel finite differences. The CST
derivatives are computed analytically.

Statement of Need
Few open-source packages exist with comparable functionalities. To the authors’ best knowledge,
the only other open-source CFD-based optimization framework that contains a geometry
parameterization method is SU2 (Economon et al., 2016). It supports Hicks–Henne bump
functions (Hicks & Henne, 1978) for airfoil optimizations and the FFD method for 3D cases.
However, this geometry parameterization cannot be used with other solvers (aerodynamic or
otherwise) because it is tightly integrated into SU2.

While both OpenVSP and ESP can be used directly in optimization without using pyGeo, they
lack the capabilities needed for high-fidelity MDO when used as stand-alone tools. pyGeo
fills these gaps through parallelism, efficient gradients, and geometric constraints. It keeps
OpenVSP and ESP in the optimization loop and provides a standard interface to these tools
for use with external solvers.

pyGeo is maintained and developed by the MDO Lab2 at the University of Michigan and is
actively used for MDO applications in research and industry. Having different parameterization
choices in pyGeo has been useful because the best parameterization depends on the type of
problem. pyGeo’s standard FFD implementation is the most commonly used parameterization
(Bons et al., 2019; Kenway & Martins, 2014). The hierarchical FFD method was used to
optimize a blended wing body aircraft (Lyu & Martins, 2014), a hydrofoil (Liao et al., 2021),
and a wind turbine (Madsen et al., 2019). The method for using multiple FFD blocks has
been used to optimize a conventional aircraft (Yildirim et al., 2021), a T-shaped hydrofoil
(Liao et al., 2022), and a supersonic transport aircraft (Seraj & Martins, 2022). The interface
to ESP made it possible to parameterize hydrogen tanks within a combined aerostructural
and packaging optimization (Brelje & Martins, 2021). pyGeo’s OpenVSP interface was used
in aeropropulsive optimizations (Yildirim et al., 2022). The implementation of CST airfoil
parameterization was used to compare methods for airfoil optimization (Adler et al., 2022).

Acknowledgements
We are grateful to the numerous pyGeo users who have contributed their time to the code and
its maintenance over the years.

References
Adler, E. J., Gray, A. C., & Martins, J. R. R. A. (2022). To CFD or not to CFD? Comparing

RANS and viscous panel methods for airfoil shape optimization. 33rd Congress of the
International Council of the Aeronautical Sciences.

Bons, N. P., He, X., Mader, C. A., & Martins, J. R. R. A. (2019). Multimodality in aerodynamic
wing design optimization. AIAA Journal, 57(3), 1004–1018. https://doi.org/10.2514/1.
J057294

Brelje, B. J., Anibal, J., Yildirim, A., Mader, C. A., & Martins, J. R. R. A. (2020). Flexible
formulation of spatial integration constraints in aerodynamic shape optimization. AIAA
Journal, 58(6), 2571–2580. https://doi.org/10.2514/1.J058366

2https://mdolab.engin.umich.edu

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

6

https://doi.org/10.2514/1.J057294
https://doi.org/10.2514/1.J057294
https://doi.org/10.2514/1.J058366
https://mdolab.engin.umich.edu
https://doi.org/10.21105/joss.05319


Brelje, B. J., & Martins, J. R. R. A. (2021). Aerostructural wing optimization for a hydrogen
fuel cell aircraft. Proceedings of the AIAA SciTech Forum. https://doi.org/10.2514/6.
2021-1132

Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., & Alonso, J. J. (2016).
SU2: An open-source suite for multiphysics simulation and design. AIAA Journal, 54(3),
828–846. https://doi.org/10.2514/1.j053813

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019).
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and op-
timization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https:
//doi.org/10.1007/s00158-019-02211-z

Haimes, R., & Dannenhoffer, J. (2013). The engineering sketch pad: A solid-modeling, feature-
based, web-enabled system for building parametric geometry. 21st AIAA Computational
Fluid Dynamics Conference. https://doi.org/10.2514/6.2013-3073

Hajdik, H. M., Yildirim, A., & Martins, J. R. R. A. (2023). Aerodynamic shape optimization
with CAD-based geometric parameterization. AIAA SciTech Forum. https://doi.org/10.
2514/6.2023-0726

Hicks, R. M., & Henne, P. A. (1978). Wing design by numerical optimization. Journal of
Aircraft, 15, 407–412. https://doi.org/10.2514/3.58379

Kenway, G. K. W., Kennedy, G. J., & Martins, J. R. R. A. (2014). Scalable parallel approach
for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA
Journal, 52(5), 935–951. https://doi.org/10.2514/1.J052255

Kenway, G. K. W., & Martins, J. R. R. A. (2014). Multipoint high-fidelity aerostructural
optimization of a transport aircraft configuration. Journal of Aircraft, 51(1), 144–160.
https://doi.org/10.2514/1.C032150

Kulfan, B. M. (2008). Universal parametric geometry representation method. Journal of
Aircraft, 45(1), 142–158. https://doi.org/10.2514/1.29958

Liao, Y., Martins, J. R. R. A., & Young, Y. L. (2021). 3-D high-fidelity hydrostructural
optimization of cavitation-free composite lifting surfaces. Composite Structures, 268,
113937. https://doi.org/10.1016/j.compstruct.2021.113937

Liao, Y., Yildirim, A., Martins, J. R. R. A., & Young, Y. L. (2022). RANS-based optimization
of a T-shaped hydrofoil considering junction design. Ocean Engineering, 262, 112051.
https://doi.org/10.1016/j.oceaneng.2022.112051

Lyu, Z., & Martins, J. R. R. A. (2014). Aerodynamic design optimization studies of a blended-
wing-body aircraft. Journal of Aircraft, 51(5), 1604–1617. https://doi.org/10.2514/1.
C032491

Madsen, M. H. Aa., Zahle, F., Sørensen, N. N., & Martins, J. R. R. A. (2019). Multipoint
high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine. Wind
Energy Science, 4, 163–192. https://doi.org/10.5194/wes-4-163-2019

Martins, J. R. R. A., & Ning, A. (2021). Engineering design optimization. Cambridge University
Press. https://doi.org/10.1017/9781108980647

Martins, J. R. R. A., Sturdza, P., & Alonso, J. J. (2003). The complex-step derivative
approximation. ACM Transactions on Mathematical Software, 29(3), 245–262. https:
//doi.org/10.1145/838250.838251

McDonald, R. A., & Gloudemans, J. R. (2022). Open vehicle sketch pad: An open source
parametric geometry and analysis tool for conceptual aircraft design. In AIAA SCITECH
2022 forum. American Institute of Aeronautics; Astronautics. https://doi.org/10.2514/6.
2022-0004

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

7

https://doi.org/10.2514/6.2021-1132
https://doi.org/10.2514/6.2021-1132
https://doi.org/10.2514/1.j053813
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.2514/6.2013-3073
https://doi.org/10.2514/6.2023-0726
https://doi.org/10.2514/6.2023-0726
https://doi.org/10.2514/3.58379
https://doi.org/10.2514/1.J052255
https://doi.org/10.2514/1.C032150
https://doi.org/10.2514/1.29958
https://doi.org/10.1016/j.compstruct.2021.113937
https://doi.org/10.1016/j.oceaneng.2022.112051
https://doi.org/10.2514/1.C032491
https://doi.org/10.2514/1.C032491
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.1017/9781108980647
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.2514/6.2022-0004
https://doi.org/10.2514/6.2022-0004
https://doi.org/10.21105/joss.05319


Sederberg, T. W., & Parry, S. R. (1986). Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph., 20(4), 151–160. https://doi.org/10.1145/15886.15903

Seraj, S., & Martins, J. R. R. A. (2022). Aerodynamic shape optimization of a supersonic
transport considering low-speed stability. AIAA SciTech Forum. https://doi.org/10.2514/
6.2022-2177

Wu, N., Kenway, G., Mader, C. A., Jasa, J., & Martins, J. R. R. A. (2020). pyOptSparse:
A Python framework for large-scale constrained nonlinear optimization of sparse systems.
Journal of Open Source Software, 5(54), 2564. https://doi.org/10.21105/joss.02564

Wu, N., Mader, C., & Martins, J. R. R. A. (2022). Sensitivity-based geometric parameterization
for aerodynamic shape optimization. AIAA AVIATION 2022 Forum. https://doi.org/10.
2514/6.2022-3931

Yildirim, A., Gray, J. S., Mader, C. A., & Martins, J. R. R. A. (2022). Boundary layer
ingestion benefit for the STARC-ABL concept. Journal of Aircraft, 59(4), 896–911.
https://doi.org/10.2514/1.C036103

Yildirim, A., Mader, C. A., & Martins, J. R. R. A. (2021). A surface mesh deformation
method near component intersections for high-fidelity design optimization. Engineering
with Computers. https://doi.org/10.1007/s00366-020-01247-w

Zhang, T., Wang, Z., Huang, W., & Yan, L. (2018). A review of parametric approaches
specific to aerodynamic design process. Acta Astronautica, 145, 319–331. https://doi.org/
10.1016/j.actaastro.2018.02.011

Hajdik et al. (2023). pyGeo: A geometry package for multidisciplinary design optimization. Journal of Open Source Software, 8(87), 5319.
https://doi.org/10.21105/joss.05319.

8

https://doi.org/10.1145/15886.15903
https://doi.org/10.2514/6.2022-2177
https://doi.org/10.2514/6.2022-2177
https://doi.org/10.21105/joss.02564
https://doi.org/10.2514/6.2022-3931
https://doi.org/10.2514/6.2022-3931
https://doi.org/10.2514/1.C036103
https://doi.org/10.1007/s00366-020-01247-w
https://doi.org/10.1016/j.actaastro.2018.02.011
https://doi.org/10.1016/j.actaastro.2018.02.011
https://doi.org/10.21105/joss.05319

	Summary
	Features
	Integrations
	Geometry Parameterization with pyGeo
	Free-form Deformation
	Parametric Geometry Tools
	Class Shape Transformation

	Constraints

	Parallelism
	Derivative Computation
	Statement of Need
	Acknowledgements
	References

