
stimupy: A Python package for creating stimuli in
vision science
Lynn Schmittwilken 1,2¶, Marianne Maertens1,2, and Joris Vincent 2

1 Science of Intelligence, Technische Universität Berlin, Germany 2 Computational Psychology,
Technische Universität Berlin, Germany ¶ Corresponding author

DOI: 10.21105/joss.05321

Software
• Review
• Repository
• Archive

Editor: Elizabeth DuPre
Reviewers:

• @alexander-pastukhov
• @JonathanReardon

Submitted: 24 March 2023
Published: 13 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Visual stimuli are at the heart of perception research. They may come as visual illusions which
demonstrate the striking differences between the perceptual and physical world, they may
involve minuscule stimulus changes which are used to probe the limits of visual sensitivity, or
they may be used to probe any other aspect of visual processing. stimupy is a free and open-
source Python package which allows the user to create visual stimuli of different complexity as
they are commonly used in the study of visual perception (Figure 1).

stimupy provides functions to generate:

• basic components, including shapes, lines, gratings, checkerboards, and Gaussians
• different types of visual noise textures
• visual stimuli such as Gabors, plaids, edges, and a variety of so-called illusions (e.g.,

Simultaneous Brightness Contrast, White’s illusion, Hermann grid, Ponzo illusion), and
many more

• stimulus sets from prior research papers, providing exact stimulus recreations (e.g.,
ModelFest, Carney et al. (1999))

• utility functions for stimulus import, export, manipulation (e.g., contrast, size), or
plotting

• documentation, including interactive demonstrations of stimulus functions
• unit and integration tests

stimupy has been designed to:

• generate (novel) visual stimuli in a reproducible, flexible, and easy way
• recreate exact stimuli as they have been used in prior vision research
• explore large parameter spaces to reveal relations between formerly unconnected stimuli
• provide classic stimulus sets (e.g., ModelFest), exactly as described in the original

manuscripts (including experimental data)
• build new stimulus sets or benchmarks (e.g., for testing computational models), and

easily add them to stimupy

• support vision science by providing a large, openly-available and flexible battery of
relevant stimulus functions

• unify and automate stimulus creation

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

1

https://orcid.org/0000-0003-3621-9576
https://orcid.org/0000-0001-6882-5584
https://doi.org/10.21105/joss.05321
https://github.com/openjournals/joss-reviews/issues/5321
https://github.com/computational-psychology/stimupy
https://doi.org/10.17605/OSF.IO/Z439V
https://elizabeth-dupre.com
https://orcid.org/0000-0003-1358-196X
https://github.com/alexander-pastukhov
https://github.com/JonathanReardon
https://creativecommons.org/licenses/by/4.0/
https://stimupy.readthedocs.io/en/latest/reference/_api/stimupy.components.html
https://stimupy.readthedocs.io/en/latest/reference/_api/stimupy.noises.html
https://stimupy.readthedocs.io/en/latest/reference/_api/stimupy.stimuli.html
https://stimupy.readthedocs.io/en/latest/reference/_api/stimupy.papers.html
https://stimupy.readthedocs.io/en/latest/reference/_api/stimupy.utils.html
https://stimupy.readthedocs.io/en/latest/index.html
https://stimupy.readthedocs.io/en/latest/reference/demos.html
https://github.com/computational-psychology/stimupy/actions/workflows/test.yml
https://doi.org/10.21105/joss.05321


Figure 1: A small fraction of the stimulus variety that stimupy can produce

State of the field
Creating visual stimuli is a central task in vision research. To generate stimuli, it is common
practice to either write your own stimulus functions from scratch; reuse existing code; or import
a static stimulus version from an image or data file (see e.g., Carney et al. (1999), Murray
(2020)). The alternative to these idiosyncratic approaches is to use existing software which
provides more flexible stimulus functions.

We are currently aware of

• Psychtoolbox (Brainard, 1997),
• Psychopy (Peirce et al., 2019),
• Pyllusion (Makowski et al., 2021),
• OCTA (Van Geert et al., 2022).

Psychtoolbox and Psychopy both provide functions to generate a number of visual stimuli.
However, stimulus generation is integrated into their main purpose which is to run psychophys-
ical experiments. The design focus of both Psychtoolbox and Psychopy has therefore been
to support the user to interface between computer hardware and MATLAB and Python,
respectively, to enable temporal precision and high dynamic range stimulus delivery.

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

2

https://doi.org/10.21105/joss.05321


The design focus of stimupy is on stimulus creation. This allows stimupy to include many
more stimuli than included in Psychtoolbox or Psychopy. It also allows the user to interact with
the stimulus arrays directly. This makes it easy to manipulate the stimulus and use it for other
purposes than psychophysical experimentation (e.g., computational modeling, visualization).
This also means that in order to present the stimuli on a computer monitor, the user may still
want to use Psychopy, Psychtoolbox or another delivery system for hardware control.

Pyllusion is a Python package to generate a number of well-known illusions such as the
Müller-Lyer, Ponzo or Zöllner illusions, and more. Pyllusion provides functions for each of
these illusions using high-level parameters (e.g., illusion strength). The parametric approach of
Pyllusion is similar in spirit to stimupy. However, in Pyllusion each illusion-function stands
alone: it produces only that stimulus, and its arguments are unique to that stimulus. In
contrast, stimupy provides a unified interface to stimulus creation, where many functions share
the same —intuitive— parameters. This makes it easier to explore parameters and to create
novel stimuli.

OCTA is also a Python package to generate stimuli, specifically grids of multiple elements
that show regularity and variety along various stimulus dimensions. These stimuli are of
particular use to studies on Gestalt vision, aesthetics and complexity. The parametric variation
of stimulus dimensions as well as the compositionality of displays are features found in both
OCTA and stimupy. Both packages also have a strong focus on ease-of-use, replicability, and
open science. stimupy currently focuses on a different class of stimuli: mainly displays used to
study early and low-level visual processes, as well as visual features such as brightness, contrast,
and orientation. Thus, OCTA and stimupy cover complementary use cases.

Another design decision that sets stimupy apart from existing software such as OCTA and
Pyllusion, is that all stimupy stimuli are generated as NumPy-arrays representing pixel-based
raster-graphics (NumPy, Harris et al. (2020)). This has several advantages over existing, vector-
graphics or custom object-based approaches, mainly that any standard array-manipulation
tooling can be used to further process a stimulus.

Statement of Need
Many visual stimuli are used time and again. Despite their relevance, there is no standard
way of implementing stimuli which considers function parameters in a way that is targeted
towards vision science. Hence, in practice, researchers implement their own stimuli from scratch
or are lucky enough to find some existing implementation online, from colleagues or in the
above mentioned software packages. Depending on the complexity or specificity of the desired
stimulus manipulation, this endeavor is (1) time-consuming, (2) prone to error, and (3) makes
comparisons with other research difficult. Hence, we developed stimupy to simplify, unify and
automate visual stimulus generation while at the same time allowing the flexibility to create
entirely new stimuli and build stimulus benchmarks.

As far as we know stimupy is the only package that:

• contains a wide variety of visual stimuli, from simple geometric shapes to complex
illusions

• includes ready-to-use replications of existing stimulus sets (e.g., ModelFest)
• makes it easy to create new stimuli because (1) stimulus functions use parameters which

are familiar to vision scientists, and (2) it provides building blocks and masks which can
be used to assemble more complicated geometries

• uses flexible output structures (NumPy arrays, and Python dictionaries) and hence makes
it easy to interact with the stimulus arrays and store additional information (e.g., stimulus
descriptions, stimulus masks, experimental data)

• is modular and therefore easy to extend with new stimulus functions, and new stimulus
sets

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

3

https://doi.org/10.21105/joss.05321


• is hierarchical in a sense that more complex stimulus functions (e.g., visual illusions) use
more basic stimulus functions (e.g., components)

• comes with application-oriented documentation, including interactive Jupyter Notebooks
(Kluyver et al., 2016)

stimupy is a free and open-source Python package which can be easily downloaded and
installed via standard package managers, or directly from its GitHub source. We think that
using stimupy will improve the consistency and accessibility of visual stimuli while helping to
avoid bugs. A key feature in stimupy is that its functions are parameterized with parameters
that are relevant to vision scientists (e.g., visual angle, spatial frequency, target placements).
Moreover, stimupy is designed in a modular fashion, i.e. more complex stimuli are composed of
less complex stimuli, which supports the understanding of existing stimuli, makes connections
between stimuli explicit, and facilitates the creation of novel stimuli. The output of all stimulus
functions is a dictionary which contains the stimulus-image as a NumPy-array together with
other useful stimulus information (e.g., masks, stimulus parameters, and experimental data).
Having the stimulus-image as a NumPy-array makes it easy to work and interact with the
stimulus, e.g., using common NumPy tooling and/or utility functions provided by stimupy.
This is useful for manipulating the stimulus as well as for using the stimulus for other purposes
than psychophysical experimentation on a computer screen (e.g., for visualizations or for
computational modeling). The main advantage of using dictionaries as function outputs is that
Python dictionaries are mutable data structures which allow you to add additional information
easily. Moreover, the stimulus dictionaries contain all parameter information relevant for
describing a stimulus (e.g., size, resolution, spatial frequency, orientation, phase, etc), and
hence help to report stimulus parameters, e.g. in a research paper. stimupy also provides
utility-functions to strip the stimulus dictionaries down to just the raw parameters that the
original stimulus function expects. Hence, it is sufficient to share only the stimulus dictionaries
to recreate exact stimulus replications, which makes it easy to create slight variations of this
stimulus. Taken together, these design choices make stimupy a flexible and versatile Python
package which facilitates the (re)creation and use of visual stimuli for a variety of purposes.

Another important use case for stimupy is the evaluation of computational vision models. A
common strategy to validate computational vision models is to test them with benchmark
datasets; e.g. in spatial vision (Carney et al., 1999), lightness perception (Murray, 2021),
object recognition (Deng et al., 2009), or object segmentation (Martin et al., 2001). However,
visual stimuli from prior research are not always publicly available and it is thus difficult and
time-consuming to test model performance on stimuli from prior research. On top of that,
creating and agreeing on benchmark datasets is a challenging task. Hence, to support the
accessibility of previously used stimuli and encourage the creation of stimulus benchmarks,
stimupy provides a collection of existing stimulus sets (including ModelFest) as they have been
used in the original manuscripts. Due to stimupy’s versatility, entire stimulus sets (including
experimental findings) can be accessed via a single line of code, and more stimulus sets can be
added at any point in time.

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

4

https://github.com/computational-psychology/stimupy
https://doi.org/10.21105/joss.05321


Figure 2: Samples from a parameter space of a single stimupy stimulus function:

stimupy’s high degree of parameterizability allows for extensive explorations of stimulus
parameter spaces (Figure 2). On the one hand, this can be useful for vision experimentation
because varying stimuli along one or multiple dimensions can be directly mapped to certain
experimental designs and research questions. On the other hand, this feature can also guide
theoretical work because among other things it allows to find so-called maximally-differentiable
stimuli (Wang & Simoncelli, 2008). The basic idea of maximum differentiation is to analyze
model predictions for systematically varied stimuli to find the ones which differentiate best
(maximally) between models. Like this, the number of stimuli tested experimentally can be
reduced to the most relevant stimuli. Since collecting (human) data is resourceful, maximal
differentiation is a useful method to reduce theoretically large stimulus parameter spaces to a
testable number of stimuli.

Last but not least, stimupy can be a useful aid in teaching contexts because it provides
students with a basic framework in which they can design and interact with stimuli in a playful
way. Since stimupy is focused on stimulus creation rather than stimulus presentation, a user
can quickly generate complex and innovative stimuli – even with beginner knowledge of Python.
The parameterized functions and the interactive documentation allow for easy teaching and
communication of how various stimulus parameters affect perception.

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

5

https://doi.org/10.21105/joss.05321


Projects Using the Software
As stimulus creation is relevant for many vision science projects, stimulus functions which are
part of stimupy or a pre-release version of the software have been used in almost all of the
work of our laboratory within the last two years. Some of stimupy’s noise functions have been
used to generate the narrowband noise masks of varying center frequency in (Schmittwilken &
Maertens, 2022b). A pre-release version was used in multiple conference contributions in which
we compared structural elements between existing models of brightness perception (Vincent
& Maertens, 2021a); in which we compared existing models of human brightness perception
on a large battery of brightness stimuli (Schmittwilken et al., 2022); in which we evaluated
how to quantitatively link output of computational models to human brightness perception
data (Vincent & Maertens, 2021b); in which we demonstrate that a family of computational
models fails to account for novel brightenss perception data (Aguilar et al., 2022; Vincent et
al., 2022b, 2022a) and in which we studied human edge processing with Cornsweet stimuli
in various kinds of noise (white, pink, brown, several narrowband noises) (Schmittwilken &
Maertens, 2022a). All these stimuli were created with stimupy or functions that are included
in the software. Moreover, we are using stimupy in ongoing work in our laboratory and in
many student projects.

Future Work
In theory, there is an infinite number of stimuli which are or could be interesting in the future
of vision research. Hence, stimupy will by default remain under active development. In future
versions, we want to add more visual stimuli and more stimulus sets – particularly dynamic
stimuli which are currently not included. Finally, we want to foster the development of stimulus
benchmarks in vision science which will be added to stimupy.

Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy -EXC 2002/1 “Science of Intelligence”- project number
390523135 and individual grants MA 5127/4-1 and 5-1 to M. Maertens

References
Aguilar, G., Maertens, M., & Vincent, J. (2022). Characterizing perceptual brightness scales

for White’s effect using conjoint measurement. Journal of Vision, 22, 3519. https:
//doi.org/10.1167/jov.22.14.3519

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https:
//doi.org/10.1163/156856897X00357

Carney, T., Klein, S. A., Tyler, C. W., Silverstein, A. D., Beutter, B., Levi, D., Watson, A.
B., Reeves, A. J., Norcia, A. M., Chen, C.-C., & others. (1999). Development of an
image/threshold database for designing and testing human vision models. Human Vision
and Electronic Imaging IV, 3644, 542–551. https://doi.org/10.1117/12.348473

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition,
248–255. https://doi.org/10.1109/CVPR.2009.5206848

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

6

https://doi.org/10.1167/jov.22.14.3519
https://doi.org/10.1167/jov.22.14.3519
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1117/12.348473
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.21105/joss.05321


T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016).
Jupyter notebooks – a publishing format for reproducible computational workflows. In F.
Loizides & B. Schmidt (Eds.), Positioning and power in academic publishing: Players, agents
and agendas (pp. 87–90). IOS Press. https://doi.org/10.3233/978-1-61499-649-1-87

Makowski, D., Lau, Z. J., Pham, T., Paul B., W., & Annabel C., S. (2021). A parametric
framework to generate visual illusions using python. Perception, 50(11), 950–965. https:
//doi.org/10.1177/03010066211057347

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring
ecological statistics. 8th IEEE Internatinonal Conference on Computer Vision, 2, 416–423.
https://doi.org/10.1109/ICCV.2001.937655

Murray, R. F. (2020). A model of lightness perception guided by probabilistic assumptions about
lighting and reflectance. Journal of Vision, 20(7), 28. https://doi.org/10.1167/jov.20.7.28

Murray, R. F. (2021). Lightness perception in complex scenes. Annual Review of Vision
Science, 7. https://doi.org/10.1146/annurev-vision-093019-115159

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Hoechenberger, R., Sogo, H., Kastman,
E., & Lindelov, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior
Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y

Schmittwilken, L., & Maertens, M. (2022a). Medium spatial frequencies mask edges most
effectively [Poster]. Journal of Vision, 22. https://doi.org/10.1167/jov.22.14.4041

Schmittwilken, L., & Maertens, M. (2022b). Fixational eye movements enable robust edge
detection. Journal of Vision, 22(8), 1–12. https://doi.org/10.1167/jov.22.8.5

Schmittwilken, L., Matic, M., Maertens, M., & Vincent, J. (2022). BRENCH: An open-
source framework for b(r)enchmarking brightness models [Talk]. Journal of Vision, 22, 36.
https://doi.org/10.1167/jov.22.3.36

Van Geert, E., Bossens, C., & Wagemans, J. (2022). The order & complexity toolbox
for aesthetics (OCTA): A systematic approach to study the relations between order,
complexity, and aesthetic appreciation. Behavior Research Methods. https://doi.org/10.
3758/s13428-022-01900-w

Vincent, J., & Maertens, M. (2021a). A history and modular future of multiscale spatial
filtering models. Journal of Vision, 21, 2824. https://doi.org/10.1167/jov.21.9.2824

Vincent, J., & Maertens, M. (2021b). The missing linking functions in computational models
of brightness perception [Talk]. OSF. osf.io/9bca7

Vincent, J., Maertens, M., & Aguilar, G. (2022a). Perceptual Brightness Scales for White’s
Effect Constrain Computational Models of Brightness Perception. Journal of Vision, 22,
4160. https://doi.org/10.1167/jov.22.14.4160

Vincent, J., Maertens, M., & Aguilar, G. (2022b). Perceptual brightness scales in a White’s
effect stimulus are not captured by multiscale spatial filtering models of brightness perception
[Poster]. Journal of Vision, 22, 20. https://doi.org/10.1167/jov.22.3.20

Wang, Z., & Simoncelli, E. P. (2008). Maximum differentiation (MAD) competition: A
methodology for comparing computational models of perceptual quantities. Journal of
Vision, 8(12), 8–8. https://doi.org/10.1167/8.12.8

Schmittwilken et al. (2023). stimupy: A Python package for creating stimuli in vision science. Journal of Open Source Software, 8(86), 5321.
https://doi.org/10.21105/joss.05321.

7

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1177/03010066211057347
https://doi.org/10.1177/03010066211057347
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1167/jov.20.7.28
https://doi.org/10.1146/annurev-vision-093019-115159
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1167/jov.22.14.4041
https://doi.org/10.1167/jov.22.8.5
https://doi.org/10.1167/jov.22.3.36
https://doi.org/10.3758/s13428-022-01900-w
https://doi.org/10.3758/s13428-022-01900-w
https://doi.org/10.1167/jov.21.9.2824
https://osf.io/9bca7
https://doi.org/10.1167/jov.22.14.4160
https://doi.org/10.1167/jov.22.3.20
https://doi.org/10.1167/8.12.8
https://doi.org/10.21105/joss.05321

	Summary
	State of the field
	Statement of Need
	Projects Using the Software
	Future Work
	Acknowledgements
	References

