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Summary
chombo-discharge is a parallelized Cartesian 2D and 3D adaptive code for simulating low-
temperature gas discharges in complex geometries. Such discharges occur when electrons
accelerate in strong electric fields and ionize the gas, and further evolution is affected by
residual space charges. Streamers, for example, are filamentary plasma dominated by space
charge effects. They are the natural precursors to leader, sparks, and lightning.

Gas discharge modeling involves simulations over multiple scales in time and space. chombo-
discharge reduces the cost of such simulations by using Cartesian Adaptive Mesh Refinement
(AMR). It also provides support for multi-material complex geometries (gas phase, electrodes,
and solid dielectrics) through an embedded boundary (EB) formulation. Geometries are
represented as implicit functions, and can be created using constructive solid geometry.
Conversion of surface meshes to implicit functions is also supported. Under the hood, chombo-
discharge uses Chombo (Colella et al., 2000) for the AMR and EB infrastructure, and is
parallelized using MPI. However, chombo-discharge supplies all numerical solvers.

chombo-discharge uses a solver-centered modular design where larger applications are developed
by coupling numerical solvers in the chombo-discharge base code, using C++ interfaces. Many
solvers already exist in chombo-discharge, all of which are parallelized and compatible with
EBs and AMR:

• Advection-diffusion-reaction solvers.
• Helmholtz equation solvers, using geometric multigrid.
• An electrostatic solver (with support for discontinuous coefficients).
• Kinetic Monte Carlo chemistry solvers.
• Radiative transfer solvers (continuum and Monte Carlo).
• Various particle solvers, e.g., for Monte Carlo radiative transfer, tracer particles, and

microscopic drift-diffusion.
• ODE solvers defined over volume or surface meshes.

All solvers exist as stand-alone applications, and many of them are also coupled through more
complex physics applications that aim at resolving different types of discharge phenomena
(e.g., statistical inception models, or particle and fluid models of streamer discharges). The
interaction of these solvers occurs through a common AMR “core”, which can also use dual
grids where e.g. fluid and particle kernels are load-balanced separately. Depending on their
needs, users can therefore enter the framework at several levels. For example, they need to
learn interfaces when using existing applications (e.g., streamer models); use C++ APIs if
developing new physics applications, or use the EB-AMR infrastructure if contributing with
new solvers.
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Statement of need
There is already a number of discharge simulation codes currently available. Commercial
codes used for simulating discharges include COMSOL (Jovanović et al., 2021), ANSYS Fluent
(Niknezhad et al., 2021), and PLASIMO (Dijk et al., 2009). Another example is Afivo-streamer
(Teunissen & Ebert, 2017), which is also open source and uses Cartesian AMR.

While chombo-discharge is not the only open-source discharge simulation code, it has a
number of unique features. In particular, chombo-discharge supports complex geometries,
and is therefore useful in many discharge-related science applications. Support for AMR is
also important, as AMR is a virtual requirement in many 3D applications (certainly the ones
involving filamentary plasma). The code is also quite performant, and its design pattern
permits a flexible and extensible approach to numerically solving various discharge-related
problems, even when these end up requiring many thousands of CPU cores. Originally, the
code was written for studying pre-breakdown discharges in high-voltage equipment (Marskar,
2019), but over time it has been adapted in order to fit a wider category of discharge-related
problems. Two science examples are given in Figure 1 (HV technology) and Figure 2 (pulsed
discharge). Lightning initiation investigations (from hydrometeors), plasma medicine, and
plasma-assisted combustion are other examples where chombo-discharge could potentially be
used.
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Figure 1: 2D Surface discharges over complex surfaces (Meyer et al., 2022). Top: Electrode (shaded
region) and dielectric (profiled surface). Bottom left panel: Electric field magnitude. Bottom right panel:
Plasma density.
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Figure 2: Streamer discharge tree simulation in full 3D using Kinetic Monte Carlo. The two figures show
the same discharge, viewed from the side and from the bottom.
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