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Summary
Proteins function through complex conformational changes that can be difficult to study
experimentally. Molecular dynamics simulations provide high spatiotemporal resolution, but
generate massive amounts of data that require specialized analysis. Markov state modeling is
a common approach to interpret simulations, which involves identifying biologically relevant
conformations and modeling the dynamics as memoryless transitions between them. Markov
models can complement experimental data with atomistic information, leading to a deeper
understanding of protein behavior.

In this work, we present msmhelper, a Python package that provides a user-friendly and
computationally efficient implementation for estimating and validating Markov state models
of protein dynamics. Given a set of metastable conformational states, the package offers a
wide range of functionalities to improve model predictions, including dynamical correction
techniques such as the Hummer-Szabo projection formalism, dynamical coring, and Gaussian
filtering, as well as methods for predicting experimentally relevant timescales and pathways.

Statement of need
Markov state modeling (MSM) has emerged as an important tool for the analysis of molecular
dynamics (MD) simulations of protein dynamics (Bowman et al., 2013; Buchete & Hummer,
2008; Prinz et al., 2011; Wang et al., 2018). In the general workflow of MSM, clustering
into hundreds to thousands of microstates is crucial to accurately represent the free energy
landscape and correct for non-optimal cuts between states. However, to comprehend the
underlying biological processes, it is essential to cluster these microstates into a few macrostates
that describe the dynamics as jumps between biologically relevant metastable conformations.
Despite the assumption that microstate dynamics can be modeled by Markovian jumps, this is
generally not the case for coarse-grained macrostate dynamics due to insufficient timescale
separation between intrastate and interstate dynamics. To address this challenge, msmhelper
includes various dynamical correction techniques, including a Gaussian filtering approach to
include short-term time-information in the geometric-based clustering step (Nagel et al., 2023),
dynamical coring (Nagel et al., 2019) to correct for spurious intrastate fluctuations at the barrier,
misclassified as interstate fluctuations, and the Hummer-Szabo projection formalism (Hummer
& Szabo, 2015), enabling an optimal projection of microstate dynamics onto the macrostate
space. Moreover, msmhelper provides an easy-to-use interface for common MSM analyses,
including the estimation of the transition matrix, the validation via Chapman-Kolmogorov tests
and implied timescales, and the estimation of biological relevant pathways including their time
scales, based on the concept of MSMPathfinder (Nagel et al., 2020).

There are well-established Python packages, in particular PyEMMA (Scherer et al., 2015)
and MSMBuilder (Beauchamp et al., 2011), providing a comprehensive set of tools for the
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entire MSM workflow, from feature extraction and projection of MD simulations onto collective
variables, to clustering and dynamical lumping to identify metastable conformations, and
ultimately to the estimation of Markov models and the prediction of relevant dynamics. In
contrast to them, msmhelper focuses only on the estimation and analysis of Markov state
models starting from given (micro- and or macro-) state trajectories. Furthermore—to the
best of the authors’ knowledge—this is the first publicly available Python implementation
of some methodologies not implemented in PyEmma and MSMBuilder, including dynamical
coring, the Hummer-Szabo projection formalism, and the estimation of waiting time based
pathways. Additionally, this package provides a rich command-line interface for common
analysis, including the creation of publication-ready figures of the implied timescales, the
Chapman-Kolmogorov test, different visualizations of the waiting time distributions, and a
comprehensive state representation. The latter two techniques were suggested in Nagel et al.
(2023), which uses msmhelper to analyze protein dynamics.

Since Markov state modeling is usually done on local computers, it is important to provide
sufficiently fast performance. By using numpy (Harris et al., 2020) and just-in-time compilation
via numba (Lam et al., 2015), all performance-critical methods in msmhelper have been
optimized. As a result, msmhelper can be much faster than conventional multi-purpose
programs such as PyEmma. For example, adopting a 10-state trajectory with 105 time steps,
both the run time of the MSM estimation (transition probability matrix) and its validation by
the well-established Chapman-Kolmogorov test are more than an order of magnitude faster. If
we compare the performance of the Markov chain Monte Carlo (MCMC) propagation, which is
commonly used to determine pathways including their corresponding time scale distributions,
msmhelper outperforms PyEMMA by up to two orders of magnitude. More details and additional
benchmarks, including source code, can be found in the documentation.

Example

Figure 1: MSM of villin headpiece, data taken from Nagel et al. (2023). (top left) Compact structural
representation of the states, called contact representation, (top center) implied timescales to validate
the Markovianity of the model, (top right) Chapman-Kolmogorov test for models based on different lag
times compared to the MD simulation, (bottom left) waiting time distribution of the folding time for
varying lag times compared, and (bottom center) detailed comparison of folding time distributions to the
MD simulation.

Nagel, & Stock. (2023). msmhelper: A Python package for Markov state modeling of protein dynamics. Journal of Open Source Software, 8(85),
5339. https://doi.org/10.21105/joss.05339.

2

https://doi.org/10.21105/joss.05339


In the following, we briefly demonstrate the capabilities of the provided command-line interface.
For this purpose, we use the publicly available micro- and macrostate trajectories of the villin
headpiece (see, Nagel et al., 2023). It is a well-studied fast folding protein, that allows us to test
common MSM analysis, including state characterization, MSM validation, and folding timescale
estimation. All results shown in Figure 1 were generated directly from the command-line
interface of msmhelper. (Top left) To characterize the structure of the metastable states,
Nagel et al. (2023) introduced a contact-based representation, each state is described by the
distribution of contacts within the contact clusters obtained using the correlation-based feature
selection method MoSAIC (Diez et al., 2022). (Top center) When estimating a Markov state
model, selecting a sufficiently long lag time 𝜏lag is of importance to ensure the Markovianity of
the data (see, e.g., Prinz et al., 2011). That is, the implied timescales 𝑡𝑖 should be constant,
given by 𝑡𝑖 = −𝜏lag/ log(𝜆𝑖), where 𝜆𝑖 denotes the 𝑖-th largest left-handed eigenvalue. (Top
right) Another approach to validate the Markovianity is the Chapman-Kolmogorov test which
compares the model’s predictions of time evolution with the results of molecular dynamics
(MD) simulations. (Bottom) To relate to experiment, we compare the predicted folding time
distributions with the MD simulation results. Using the median, interquartile range (IQR), and
corresponding bounds.
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