
Physics-Informed Neural networks for Advanced
modeling

Dario Coscia 1*, Anna Ivagnes 1*, Nicola Demo 1*, and Gianluigi
Rozza 1*

1 SISSA, International School of Advanced Studies, Via Bonomea 265, Trieste, Italy * These authors
contributed equally.

DOI: 10.21105/joss.05352

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @yorkiva
• @y-yao
• @akshaysubr

Submitted: 21 March 2023
Published: 19 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Introduction
Artificial Intelligence (AI) strategies are massively emerging in several fields of academia and
industrial research Wang & Liao (2004) due to the growing disposal of data, as well as the great
improvement in computational resources. In the area of applied mathematics and simulations,
AI strategies are being used to solve problems where classical methods fail (Cuomo et al.,
2022). However, the amount of data required to analyze complex systems is often insufficient
to make AI predictions reliable and robust. Physics-informed neural networks (PINNs) have
been formulated (Raissi et al., 2019) to overcome the issues of missing data, by incorporating
the physical knowledge into the neural network training. Thus, PINNs aim to approximate any
differential equation by solving a minimization problem in an unsupervised learning setting,
learning the unknown field in order to preserve the imposed constraints (boundaries and physical
residuals). Formally, we consider the general form of a differential equation, which typically
presents the most challenging issues from a numerical point of view:

ℱ(𝑢𝑢𝑢(𝑧𝑧𝑧); 𝛼) = 𝑓𝑓𝑓(𝑧𝑧𝑧) 𝑧𝑧𝑧 ∈ Ω,
ℬ(𝑢𝑢𝑢(𝑧𝑧𝑧)) = 𝑔𝑔𝑔(𝑧𝑧𝑧) 𝑧𝑧𝑧 ∈ 𝜕Ω,

(1)

where Ω ⊂ ℝ𝑑 is the domain and 𝜕Ω the boundaries of the latter. In particular, 𝑧𝑧𝑧 indicates
the spatio-temporal coordinates vector, 𝑢𝑢𝑢 the unknown field, 𝛼 the physical parameters, 𝑓𝑓𝑓 the
forcing term, and ℱ the differential operator. In addition, ℬ identifies the operator indicating
arbitrary initial or boundary conditions and 𝑔𝑔𝑔 the boundary function. The PINN’s objective is
to find a solution to the problem, which is done by approximating the true solution 𝑢𝑢𝑢 with a
neural network ̂𝑢𝑢𝑢𝜃 ∶ Ω → ℝ, with 𝜃 network’s parameters. Such a model is trained to find the
optimal parameters 𝜃∗ whose minimizing the physical loss function depending on the physical
conditions ℒℱ, boundary conditions ℒℬ and, if available, real data ℒdata:

𝜃∗ = argmin
𝜃

ℒ = argmin
𝜃

(ℒℱ +ℒℬ +ℒdata). (2)

The PINNs framework is completely general and applicable to different types of ordinary
differential equations (ODEs), or partial differential equations (PDEs). Nevertheless, the loss
function strictly depends on the problem chosen to be solved, since different operators or
boundary conditions lead to different losses, increasing the difficulty to write a general and
portable code for different problems.

Coscia et al. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source Software, 8(87), 5352. https:
//doi.org/10.21105/joss.05352.

1

https://orcid.org/0000-0001-8833-6833
https://orcid.org/0000-0002-2369-4493
https://orcid.org/0000-0003-3107-9738
https://orcid.org/0000-0002-0810-8812
https://doi.org/10.21105/joss.05352
https://github.com/openjournals/joss-reviews/issues/5352
https://github.com/mathLab/PINA
https://doi.org/10.5281/zenodo.8163732
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/yorkiva
https://github.com/y-yao
https://github.com/akshaysubr
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05352
https://doi.org/10.21105/joss.05352


Figure 1: PINA logo.

PINA, Physics-Informed Neural networks for Advanced modeling, is a Python library built
using PyTorch that provides a user-friendly API to formalize a large variety of physical problems
and solve it using PINNs easily.

Statement of need
PINA is an open-source Python library that provides an intuitive interface for the approximated
resolution of Ordinary Differential Equations and Partial Differential Equations using a deep
learning paradigm, in particular via PINNs. The gain of popularity for PINNs in recent years,
and the evolution of open-source frameworks, such as TensorFlow, Keras, and PyTorch, led to
the development of several libraries, whose focus is the exploitation of PINNs to approximately
solve ODEs and PDEs. We here mention some PyTorch-based libraries, NeuroDiffEq (Chen et
al., 2020), IDRLNet (Peng et al., 2021), NVIDIA Modulus (NVIDIA Modulus, 2023), and some
TensorFlow-based libraries, such as DeepXDE (Lu et al., 2021), TensorDiffEq (McClenny et
al., 2021), SciANN (Haghighat & Juanes, 2021) (which is both TensorFlow and Keras-based),
PyDEns (Koryagin et al., 2019), Elvet (Araz et al., 2021), NVIDIA SimNet (Hennigh et al.,
2021). Among all these frameworks, PINA wants to emerge for its easiness of usage, allowing
the users to quickly formulate the problem at hand and solve it, resulting in an intuitive
framework designed by researchers for researchers.

Built over PyTorch — in order to inherit the autograd module and all the other features already
implemented — PINA provides indeed documented API to explain usage and capabilities of
the different classes. We have built several abstract interfaces not only for better structure of
the source code but especially to give the final user an easy entry point to implement their own
extensions, like new loss functions, new training procedures, and so on. This aspect, together
with the capability to use all the PyTorch models, makes it possible to incorporate almost
any existing architecture into the PINA framework. We have decided to build it on top of
PyTorch in order to exploit the autograd module, as well as all the other features implemented
in this framework. The final outcome is then a library with incremental complexity, capable of
being used by the new users to perform the first investigation using PINNs, but also as a core
framework to actively develop new features to improve the discussed methodology.

The high-level structure of the package is depicted in our API; the approximated solution
of a differential equation can be implemented using PINA in a few lines of code thanks to
the intuitive and user-friendly interface. Besides the user-friendly interface, PINA also offers
several examples and tutorials, aiming to guide new users toward an easy exploration of the
software features. The online documentation is released at https://mathlab.github.io/PINA/,
while the robustness of the package is continuously monitored by unit tests.

PINA workflow is characterized by 3 main steps: the problem formulation, the model definition,
i.e., the structure of the neural network used, and the training, eventually followed by the data
visualization.

Coscia et al. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source Software, 8(87), 5352. https:
//doi.org/10.21105/joss.05352.

2

https://github.com/mathLab/PINA/tree/master/readme/API_color.png
https://mathlab.github.io/PINA/
https://doi.org/10.21105/joss.05352
https://doi.org/10.21105/joss.05352


Problem definition in PINA
The first step is the formalization of the problem. The problem definition in the PINA
framework is inherited from one or more problem classes (at the moment the available classes
are SpatialProblem, TimeDependentProblem, ParametricProblem), depending on the nature
of the problem treated. The user has to include in the problem formulation the following
components:

• the information about the domain, i.e., the spatial and temporal variables, the parameters
of the problem (if any), with the corresponding range of variation;

• the output variables, i.e., the unknowns of the problem;

• the conditions that the neural network has to satisfy, i.e., the differential equations, the
boundary and initial conditions.

We highlight that in PINA we abandoned the classical division between physical loss, boundary
loss, and data loss: all these terms are encapsulated within the Condition class, in order to
keep the framework as general as possible. The users can indeed define all the constraints the
unknown field needs to satisfy, avoiding any forced structure in the formulation and allowing
them to mix heterogeneous constraints — e.g., data values, differential boundary conditions.
Moreover PINA already implements functions to easily compute the diffential operations
(gradient, divergence, laplacian) over the output(s) of interest, aiming to make the problem
definition an easy task for the users.

Model definition in PINA
The second fundamental step is the definition of the model of the neural network employed to
find the approximated solution to the differential problem in question. In PINA, the user has
the possibility to use either a custom torch network model, or to exploit one of the built-in
models such as FeedForward, MultiFeedForward and DeepONet, defining their characteristics
during instantiation — i.e., number of layers, number of neurons, activation functions. The
list of the built-in models will be extended in the next release of the library.

Training in PINA
In the last step, the actual training of the model in order to solve the problem at hand
is computed. In this phase, the residuals of the conditions (expressed in the problem) are
minimized in order to provide the target approximation. The sampling points where the physical
residuals are evaluated can be passed by the user, or automatically sampled from the original
domain using one of the available sampling techniques. The training is then computed for a
certain amount of epochs, or until reaching the user-defined loss threshold. Once the model is
ready to be inferred, the user can save it onto a binary file for future reusing, by inheriting the
PyTorch functionality. The user can also evaluate the (trained) model for any new input, or
just use it together with the Plotter in order to render the predicted output variables.

Acknowledgements
We thank our colleagues and research partners who contributed in the former and current
developments of PINA library. This work was partially funded by European Union Funding for
Research and Innovation — Horizon 2020 Program — in the framework of European Research
Council Executive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447, “Advanced
Reduced Order Methods with Applications in Computational Fluid Dynamics,” P.I. Professor
Gianluigi Rozza.

Coscia et al. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source Software, 8(87), 5352. https:
//doi.org/10.21105/joss.05352.

3

https://doi.org/10.21105/joss.05352
https://doi.org/10.21105/joss.05352


References
Araz, J. Y., Criado, J. C., & Spannowsky, M. (2021). Elvet – a neural network-based

differential equation and variational problem solver. arXiv Preprint arXiv:2103.14575.
https://doi.org/10.48550/arXiv.2103.14575

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Di Giovanni,
M. (2020). Neurodiffeq: A Python package for solving differential equations with neural
networks. Journal of Open Source Software, 5(46), 1931. https://doi.org/10.21105/joss.
01931

Cuomo, S., Cola, V. S. di, Giampaolo, F., Rozza, G., Raissi, M., & Piccialli, F. (2022).
Scientific machine learning through physics-informed neural networks: Where we are and
what’s next. arXiv. https://doi.org/10.48550/ARXIV.2201.05624

Deng, L., Yu, D., & others. (2014). Deep learning: Methods and applications. Foundations and
Trends® in Signal Processing, 7 (3–4), 197–387. https://doi.org/10.1561/9781601988157

Haghighat, E., & Juanes, R. (2021). Sciann: A Keras/TensorFlow wrapper for scientific
computations and physics-informed deep learning using artificial neural networks. Computer
Methods in Applied Mechanics and Engineering, 373, 113552. https://doi.org/10.1016/j.
cma.2020.113552

Hennigh, O., Narasimhan, S., Nabian, M. A., Subramaniam, A., Tangsali, K., Fang, Z.,
Rietmann, M., Byeon, W., & Choudhry, S. (2021). NVIDIA SimNet™: An AI-accelerated
multi-physics simulation framework. International Conference on Computational Science,
447–461. https://doi.org/10.1007/978-3-030-77977-1_36

Koryagin, A., Khudorozkov, R., & Tsimfer, S. (2019). PyDEns: A Python framework for
solving differential equations with neural networks. arXiv Preprint arXiv:1909.11544.
https://doi.org/10.48550/arXiv.1909.11544

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for
solving differential equations. SIAM Review, 63(1), 208–228. https://doi.org/10.1137/
19m1274067

McClenny, L. D., Haile, M. A., & Braga-Neto, U. M. (2021). TensorDiffEq: Scalable multi-
GPU forward and inverse solvers for physics informed neural networks. arXiv Preprint
arXiv:2103.16034. https://doi.org/10.48550/arXiv.2103.16034

NVIDIA Modulus. (2023). https://github.com/NVIDIA/modulus.

Peng, W., Zhang, J., Zhou, W., Zhao, X., Yao, W., & Chen, X. (2021). IDRLnet: A physics-
informed neural network library. arXiv Preprint arXiv:2107.04320. https://doi.org/10.
48550/arXiv.2107.04320

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378, 686–707. https:
//doi.org/10.1016/j.jcp.2018.10.045

Wang, D. H., & Liao, W. H. (2004). Modeling and control of magnetorheological fluid
dampers using neural networks. Smart Materials and Structures, 14(1), 111. https:
//doi.org/10.1088/0964-1726/14/1/011

Coscia et al. (2023). Physics-Informed Neural networks for Advanced modeling. Journal of Open Source Software, 8(87), 5352. https:
//doi.org/10.21105/joss.05352.

4

https://doi.org/10.48550/arXiv.2103.14575
https://doi.org/10.21105/joss.01931
https://doi.org/10.21105/joss.01931
https://doi.org/10.48550/ARXIV.2201.05624
https://doi.org/10.1561/9781601988157
https://doi.org/10.1016/j.cma.2020.113552
https://doi.org/10.1016/j.cma.2020.113552
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.48550/arXiv.1909.11544
https://doi.org/10.1137/19m1274067
https://doi.org/10.1137/19m1274067
https://doi.org/10.48550/arXiv.2103.16034
https://github.com/NVIDIA/modulus
https://doi.org/10.48550/arXiv.2107.04320
https://doi.org/10.48550/arXiv.2107.04320
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1088/0964-1726/14/1/011
https://doi.org/10.1088/0964-1726/14/1/011
https://doi.org/10.21105/joss.05352
https://doi.org/10.21105/joss.05352

	Introduction
	Statement of need
	Problem definition in PINA
	Model definition in PINA
	Training in PINA

	Acknowledgements
	References

