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Summary
TauFactor 2 is an open-source, GPU accelerated microstructural analysis tool for extracting
metrics from voxel based data, including transport properties such as the touristy factor.
Tortuosity factor, 𝜏, is a material parameter that defines the reduction in transport arising
from the arrangement of the phases in a multiphase medium (see Figure 1). As shown in
Equation 1, the effective transport coefficient of a material, 𝐷eff, can be calculated from the
phases intrinsic transport coefficient, 𝐷, volume fraction, 𝜖, and 𝜏 (Cooper et al., 2016) (note,
this value of 𝜏 should not be squared (Tjaden et al., 2016)).

𝐷eff = 𝐷𝜖
𝜏

(1)

Tortuosity factor has been a metric of interest in a broad range of fields for many of decades.
In geophysics, 𝜏 influences groundwater flow through pourous rocks, which has significant
environmental contamination impacts (Carey et al., 2016). Electrochemists use 𝜏 to solve
a reduced-order system of equations describing the electrochemical behaviour of lithium-ion
batteries, which influences a cells power rating (Landesfeind et al., 2018). The imaging and
subsequent modeling of materials to determine 𝜏 is thus commonplace.

Figure 1: Microstructure and flux field of a sample from the microlib.io library (Kench et al., 2022).
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Statement of need
Materials characterisation techniques are constantly improving, allowing the collection of
larger field-of-view images with higher resolutions (Withers et al., 2021). Alongside these
developments, machine learning algorithms have enabled the generation of arbitrarily large
volumes, and can further enhance image quality through super-resolution techniques (Dahari
et al., 2023). The resulting high fidelity microstructural datasets can be used to extract
statistically representative metrics of a materials composition and performance. However,
with increasing dataset size, the computational cost to perform such analysis can lead to
prohibitively long run times. This is especially problematic for transport type metrics, such as
the touristy factor, as they are inherently 3D and require the use of iterative solvers.

TauFactor 1 (Cooper et al., 2016) provided an open-source MATLAB application for calculating
various microstructural metrics, including the touristy factor. However, its implementation
as a serial CPU based solver meant that large microstructural dataset could take hours
to converge. This made TauFactor 1 unsuitable for use in high-throughput tasks such as
materials optimisation. TauFactor 2 provides the necessary efficiency to ensure users can
analyse large datasets in reasonable times. The software is built with PyTorch (Paszke et al.,
2019), a commonly used and highly optimised python package for machine learning. The GPU
acceleration that has enabled the drastic speed up of neural network training proves equally
effective for the task of iteratively solving transport equations, where matrix multiplication
and addition are the main operations required. The use of Python and PyTorch ensures broad
support and easy installation, as well as the option to run the software on CPU if GPU hardware
is not available. The ability to run simulations with just a few lines of code ensures accessibility
for researchers from the diverse fields where this software may be of use.

The Python implementation is similar to the original TauFactor 1, taking advantage of
efficiency gains such as the precalculation of prefactors and the use of over-relaxation. The
same convergence criteria are also used, where the vertical flux between each layer is averaged
across the planes parallel to the stimulated boundaries. If the percentage error between the
minimum and maximum flux is below a given value (default 1%), this indicates convergence
has been reached. Once this is satsfied, an extra 100 iterations are performed to confirm the
stability of the system. A notable difference in TauFactor 2 is that flux is calculated for all
voxels. This replaces an indexing system in TauFactor 1, which solved only in active voxels.
We find that the speed of GPU indexing compared to matrix multiplication makes this trade-off
worthwhile. As well as the standard solver for a single transport phase, a multi-phase solver is
available, where the tortuosity relates 𝐷eff to the intrinsic diffusion coefficients and volume
fractions of the various phases, 𝑝, as follows:

𝐷eff =
∑𝑝 𝐷𝑝𝜖𝑝

𝜏
= 𝐷mean

𝜏
(2)

𝐷mean is a weighted sum of the active phase transport coefficients according to their volume
fractions, which gives a transport coefficient equivalent to prismatic blocks of each phase
spanning a test volume, in the direction of transport (i.e. perfectly straight transport paths).
Periodic boundary conditions can also be used, which replace no-flux boundary conditions
at the outer edges of the control volume. Finally, Taufactor 2 also includes an electrode
tortuosity factor solver (see (Nguyen et al., 2020)). There are also GPU accelerated functions
for calculating volume fractions, surface areas, triple phase boundaries and the two-point
correlation function.

To compare the performance of TauFactor 2 to other available software, a test volume
(500x500x500 = 125,000,000 voxels) was created. One of the phases in this two-phase volume
fully percolates in all three directions, while the other phase does not percolate at all. The
percolating phase has a volume fraction of exactly 30%. The percolating network is anisotropic
in the three directions, leading to different transport metrics. Lastly, the structure is periodic
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at its boundaries, allowing for the exploration of the impact of periodic transport boundaries.
This microstructure is available in the GitHub repository, providing a standard against which
new software can also be measured. The speed of five different solvers, namely TauFactor
1 (Cooper et al., 2016), TauFactor 1.9 (an updated version of TauFactor 1, available here,
that has new solvers such as diffusion impedance and can be called inline as well as from the
GUI (Cooper et al., 2017)), TauFactor 2 (CPU), TauFactor 2 (GPU), PoreSpy (Gostick et al.,
2019) and Puma (Ferguson et al., 2018), are shown in Figure 2. To check the accuracy of
the calculated tortuosity factors, we overconverge TauFactor 2 to give a ‘true value’ in each
direction. Using default convergence criteria, all five solvers are within 0.5% of the true values
other then PuMa’s explicit jump solver (5% error), which is thus excluded (note it was still
>2x slower than TF2). For this analysis we used a NVIDIA A6000 48GB GPU and AMD Ryzen
Threadripper 3970X Gen3 32 Core TRX4 CPU. TauFactor 2 is over 10 times faster than the
next best solver, TauFactor 1.9, and over 100 times faster than the original TauFactor 1 solver.

Figure 2: Speed comparison for the four solvers when applied to the test volume. The mean time across
all 3 directions is plotted. The values of the overconverged 𝜏 in each direction are: 1.1513, 1.3905,
4.2431.
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