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Summary
Normalizing flows model probability distributions through an expressive tractable density (D.
Rezende & Mohamed, 2015; Esteban G. Tabak & Turner, 2013; Esteban G. Tabak & Vanden-
Eijnden, 2010). They transform a simple base distribution, such as a Gaussian, through a
sequence of invertible functions, which are referred to as layers. These layers typically use
neural networks to become very expressive. Flows are ubiquitous in machine learning and have
been applied to image generation (Grcić et al., 2021; Kingma & Dhariwal, 2018), text modeling
(Wang & Wang, 2019), variational inference (D. Rezende & Mohamed, 2015), approximating
Boltzmann distributions (Noé et al., 2019), and many other problems (Kobyzev et al., 2021;
Papamakarios et al., 2021).

Here, we present normflows, a Python package for normalizing flows. It allows to build
normalizing flow models from a suite of base distributions, flow layers, and neural networks.
The package is implemented in the popular deep learning framework PyTorch (Paszke et al.,
2019), which simplifies the integration of flows in larger machine learning models or pipelines.
It supports most of the common normalizing flow architectures, such as Real NVP (Dinh et
al., 2017), Glow (Kingma & Dhariwal, 2018), Masked Autoregressive Flows (Papamakarios
et al., 2017), Neural Spline Flows (Durkan et al., 2019; Müller et al., 2019), Residual Flows
(Chen et al., 2019), and many more. The package can be easily installed via pip and the code
is publicly available on GitHub.

Statement of need
normflows focuses on flows that are composed of discrete transformations, as opposed to
continuous normalizing flows (Chen et al., 2018; Papamakarios et al., 2021). There are several
other packages implementing discrete normalizing flows, such as TensorFlow Probability (Dillon
et al., 2017) for TensorFlow, distrax (Babuschkin et al., 2020) for JAX, and nflows (Durkan
et al., 2020) and FrEIA (Ardizzone et al., 2018-2022) for PyTorch. However, none of them
support the two popular flow architectures, residual and autoregressive flows, within a single
package, while we do so.

Moreover, normflows stands out by providing tools that are often used when approximating
Boltzmann distributions. First, sampling layers needed for Stochastic Normalizing Flows
(Nielsen et al., 2020; Wu et al., 2020) are included. Second, Neural Spline Flows on circular
coordinates are supported (D. J. Rezende et al., 2020), which can be combined with standard
coordinates on bounded or unbounded intervals. They are needed when modeling the internal
coordinates of molecules consisting of angles and lengths (Midgley et al., 2023). Furthermore,
there is an extension for normflows that adds Boltzmann distributions as targets as well as
flow layers converting between Cartesian and internal coordinates (Stimper et al., 2023).

Our package has already been used in several scientific projects and publications (Campbell et
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al., 2021; Midgley et al., 2023; Stimper et al., 2022). Due to its modular nature, normflows
can be easily extended to house new flow layers, base distributions, or other tools. For instance,
(Stimper et al., 2022) extends the package by adding resampled base distributions, which
overcome an architectural weakness of normalizing flows and make them more expressive.

Examples

Figure 1: Target density defined on a cylinder surface, having an unbounded coordinate 𝑥 and a circular
coordinate 𝜙. A Neural Spline Flow is fit to it, being almost indistinguishable from the target. (a) shows
the densities in 2D and (b) is a visualization on the cylinder surface.

In the GitHub repository of our package, we provide various examples illustrating how to
use it. We show how to build a flow model from a base distribution, a list of flow layers,
and, optionally, a target distribution. They can be trained by computing a loss through the
respective methods provided and minimizing it with the standard PyTorch optimizers. We show
how to approximate simple 2D distributions, but, moreover, apply flows to images through the
multiscale architecture (Dinh et al., 2017), which normflows provides as well. Furthermore,
there is an example of how to build a variational autoencoder with normalizing flows as well.

Here, we want to illustrate a strength of normflows, i.e. that it can deal with combinations
of standard and circular coordinates. Therefore, we consider a distribution of two random
variables, 𝑥 and 𝜙. 𝑥 follows a Gaussian distribution with density 𝑝(𝑥) = 𝒩(𝑥|0, 1) and 𝜙 has
a circular von Mises distribution such that 𝑝(𝜙|𝑥) = ℳ(𝜙|𝜇(𝑥), 1) with 𝜇(𝑥) = 3𝑥. We train
a Neural Spline Flow with an unbound and a circular coordinate to approximate the target
distribution 𝑝(𝑥, 𝜙) = 𝑝(𝑥)𝑝(𝜙|𝑥) by minimizing the reverse Kullback-Leibler divergence. As
shown in Figure 1, the density of the flow is almost indistinguishable from the target.
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