
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper 1,2, David Liu1, Andrew Campbell1, Vincent Berenz2,
Lukas Ryll1, Bernhard Schölkopf 2, and José Miguel Hernández-Lobato1

1 University of Cambridge, Cambridge, United Kingdom 2 Max Planck Institute for Intelligent Systems,
Tübingen, Germany

DOI: 10.21105/joss.05361

Software
• Review
• Repository
• Archive

Editor: Marcel Stimberg
Reviewers:

• @matejgrcic
• @kazewong

Submitted: 18 February 2023
Published: 24 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Normalizing flows model probability distributions through an expressive tractable density (D.
Rezende & Mohamed, 2015; Esteban G. Tabak & Turner, 2013; Esteban G. Tabak & Vanden-
Eijnden, 2010). They transform a simple base distribution, such as a Gaussian, through a
sequence of invertible functions, which are referred to as layers. These layers typically use
neural networks to become very expressive. Flows are ubiquitous in machine learning and have
been applied to image generation (Grcić et al., 2021; Kingma & Dhariwal, 2018), text modeling
(Wang & Wang, 2019), variational inference (D. Rezende & Mohamed, 2015), approximating
Boltzmann distributions (Noé et al., 2019), and many other problems (Kobyzev et al., 2021;
Papamakarios et al., 2021).

Here, we present normflows, a Python package for normalizing flows. It allows to build
normalizing flow models from a suite of base distributions, flow layers, and neural networks.
The package is implemented in the popular deep learning framework PyTorch (Paszke et al.,
2019), which simplifies the integration of flows in larger machine learning models or pipelines.
It supports most of the common normalizing flow architectures, such as Real NVP (Dinh et
al., 2017), Glow (Kingma & Dhariwal, 2018), Masked Autoregressive Flows (Papamakarios
et al., 2017), Neural Spline Flows (Durkan et al., 2019; Müller et al., 2019), Residual Flows
(Chen et al., 2019), and many more. The package can be easily installed via pip and the code
is publicly available on GitHub.

Statement of need
normflows focuses on flows that are composed of discrete transformations, as opposed to
continuous normalizing flows (Chen et al., 2018; Papamakarios et al., 2021). There are several
other packages implementing discrete normalizing flows, such as TensorFlow Probability (Dillon
et al., 2017) for TensorFlow, distrax (Babuschkin et al., 2020) for JAX, and nflows (Durkan
et al., 2020) and FrEIA (Ardizzone et al., 2018-2022) for PyTorch. However, none of them
support the two popular flow architectures, residual and autoregressive flows, within a single
package, while we do so.

Moreover, normflows stands out by providing tools that are often used when approximating
Boltzmann distributions. First, sampling layers needed for Stochastic Normalizing Flows
(Nielsen et al., 2020; Wu et al., 2020) are included. Second, Neural Spline Flows on circular
coordinates are supported (D. J. Rezende et al., 2020), which can be combined with standard
coordinates on bounded or unbounded intervals. They are needed when modeling the internal
coordinates of molecules consisting of angles and lengths (Midgley et al., 2023). Furthermore,
there is an extension for normflows that adds Boltzmann distributions as targets as well as
flow layers converting between Cartesian and internal coordinates (Stimper et al., 2023).

Our package has already been used in several scientific projects and publications (Campbell et

Stimper et al. (2023). normflows: A PyTorch Package for Normalizing Flows. Journal of Open Source Software, 8(86), 5361. https:
//doi.org/10.21105/joss.05361.

1

https://orcid.org/0000-0002-4965-4297
https://orcid.org/0000-0002-8177-0925
https://doi.org/10.21105/joss.05361
https://github.com/openjournals/joss-reviews/issues/5361
https://github.com/VincentStimper/normalizing-flows
https://doi.org/10.5281/zenodo.8027667
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/matejgrcic
https://github.com/kazewong
https://creativecommons.org/licenses/by/4.0/
https://github.com/VincentStimper/normalizing-flows
https://doi.org/10.21105/joss.05361
https://doi.org/10.21105/joss.05361

al., 2021; Midgley et al., 2023; Stimper et al., 2022). Due to its modular nature, normflows
can be easily extended to house new flow layers, base distributions, or other tools. For instance,
(Stimper et al., 2022) extends the package by adding resampled base distributions, which
overcome an architectural weakness of normalizing flows and make them more expressive.

Examples

Figure 1: Target density defined on a cylinder surface, having an unbounded coordinate 𝑥 and a circular
coordinate 𝜙. A Neural Spline Flow is fit to it, being almost indistinguishable from the target. (a) shows
the densities in 2D and (b) is a visualization on the cylinder surface.

In the GitHub repository of our package, we provide various examples illustrating how to
use it. We show how to build a flow model from a base distribution, a list of flow layers,
and, optionally, a target distribution. They can be trained by computing a loss through the
respective methods provided and minimizing it with the standard PyTorch optimizers. We show
how to approximate simple 2D distributions, but, moreover, apply flows to images through the
multiscale architecture (Dinh et al., 2017), which normflows provides as well. Furthermore,
there is an example of how to build a variational autoencoder with normalizing flows as well.

Here, we want to illustrate a strength of normflows, i.e. that it can deal with combinations
of standard and circular coordinates. Therefore, we consider a distribution of two random
variables, 𝑥 and 𝜙. 𝑥 follows a Gaussian distribution with density 𝑝(𝑥) = 𝒩(𝑥|0, 1) and 𝜙 has
a circular von Mises distribution such that 𝑝(𝜙|𝑥) = ℳ(𝜙|𝜇(𝑥), 1) with 𝜇(𝑥) = 3𝑥. We train
a Neural Spline Flow with an unbound and a circular coordinate to approximate the target
distribution 𝑝(𝑥, 𝜙) = 𝑝(𝑥)𝑝(𝜙|𝑥) by minimizing the reverse Kullback-Leibler divergence. As
shown in Figure 1, the density of the flow is almost indistinguishable from the target.

Acknowledgements
We thank Laurence Midgley and Timothy Gebhard for their valuable contributions to the
package. Moreover, we thank everyone who contacted us via mail or on GitHub for the valuable
feedback and spotting bugs.

José Miguel Hernández-Lobato acknowledges support from a Turing AI Fellowship under grant
EP/V023756/1. This work was supported by the German Federal Ministry of Education and
Research (BMBF): Tübingen AI Center, FKZ: 01IS18039B; and by the Machine Learning
Cluster of Excellence, EXC number 2064/1 - Project number 390727645.

References
Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., & Sorrenson, P.

(2018-2022). Framework for Easily Invertible Architectures (FrEIA). https://github.com/
vislearn/FrEIA

Stimper et al. (2023). normflows: A PyTorch Package for Normalizing Flows. Journal of Open Source Software, 8(86), 5361. https:
//doi.org/10.21105/joss.05361.

2

https://github.com/VincentStimper/normalizing-flows
https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
https://doi.org/10.21105/joss.05361
https://doi.org/10.21105/joss.05361

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden,
D., Cai, T., Clark, A., Danihelka, I., Fantacci, C., Godwin, J., Jones, C., Hemsley, R.,
Hennigan, T., Hessel, M., Hou, S., Kapturowski, S., Keck, T., … Viola, F. (2020). The
DeepMind JAX Ecosystem.

Campbell, A., Chen, W., Stimper, V., Hernandez-Lobato, J. M., & Zhang, Y. (2021). A gradient
based strategy for Hamiltonian Monte Carlo hyperparameter optimization. Proceedings of
the 38th International Conference on Machine Learning, 1238–1248.

Chen, R. T. Q., Behrmann, J., Duvenaud, D. K., & Jacobsen, J.-H. (2019). Residual flows for
invertible generative modeling. Advances in Neural Information Processing Systems, 32.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary
Differential Equations. Advances in Neural Information Processing Systems, 31.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi,
A., Hoffman, M., & Saurous, R. A. (2017). TensorFlow Distributions. arXiv Preprint
arXiv:1711.10604. https://doi.org/10.48550/arXiv.1711.10604

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using Real NVP.
International Conference on Learning Representations.

Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2019). Neural spline flows. Advances
in Neural Information Processing Systems, 32, 7511–7522.

Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2020). nflows: Normalizing flows in
PyTorch. Zenodo. https://doi.org/10.5281/zenodo.4296287

Grcić, M., Grubišić, I., & Šegvić, S. (2021). Densely connected normalizing flows. Advances in
Neural Information Processing Systems, 34.

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems, 31.

Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2021). Normalizing flows: An introduction
and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11), 3964–3979. https://doi.org/10.1109/TPAMI.2020.2992934

Midgley, L. I., Stimper, V., Simm, G. N. C., Schölkopf, B., & Hernández-Lobato, J. M. (2023).
Flow Annealed Importance Sampling Bootstrap. International Conference on Learning
Representations.

Müller, T., McWilliams, B., Rousselle, F., Gross, M., & Novák, J. (2019). Neural importance
sampling. ACM Transactions on Graphics (TOG), 38(5), 1–19.

Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2020). SurVAE flows:
Surjections to bridge the gap between VAEs and flows. Advances in Neural Information
Processing Systems 33.

Noé, F., Olsson, S., Köhler, J., & Wu, H. (2019). Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457). https://doi.org/10.
1126/science.aaw1147

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B.
(2021). Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57), 1–64.

Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density
estimation. Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2335–2344.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,

Stimper et al. (2023). normflows: A PyTorch Package for Normalizing Flows. Journal of Open Source Software, 8(86), 5361. https:
//doi.org/10.21105/joss.05361.

3

https://doi.org/10.48550/arXiv.1711.10604
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.21105/joss.05361
https://doi.org/10.21105/joss.05361

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035).

Rezende, D. J., Papamakarios, G., Racanière, S., Albergo, M. S., Kanwar, G., Shanahan, P.
E., & Cranmer, K. (2020). Normalizing flows on tori and spheres. Proceedings of the 37th
International Conference on Machine Learning, 119, 8083–8092.

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. Proceedings
of the 32nd International Conference on Machine Learning, 1530–1538.

Stimper, V., Campbell, A., & Hernández-Lobato, J. M. (2023). Implementing Boltzmann
generators with normflows. Zenodo. https://doi.org/10.5281/zenodo.7565800

Stimper, V., Schölkopf, B., & Hernández-Lobato, J. M. (2022). Resampling Base Distributions
of Normalizing Flows. Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, 151, 4915–4936.

Tabak, Esteban G., & Turner, C. V. (2013). A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2), 145–164. https:
//doi.org/10.1002/cpa.21423

Tabak, Esteban G., & Vanden-Eijnden, E. (2010). Density estimation by dual ascent of
the log-likelihood. Communications in Mathematical Sciences, 8(1), 217–233. https:
//doi.org/10.4310/CMS.2010.v8.n1.a11

Wang, P. Z., & Wang, W. Y. (2019). Riemannian normalizing flow on variational Wasserstein
autoencoder for text modeling. Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers).

Wu, H., Köhler, J., & Noe, F. (2020). Stochastic normalizing flows. Advances in Neural
Information Processing Systems, 33, 5933–5944.

Stimper et al. (2023). normflows: A PyTorch Package for Normalizing Flows. Journal of Open Source Software, 8(86), 5361. https:
//doi.org/10.21105/joss.05361.

4

https://doi.org/10.5281/zenodo.7565800
https://doi.org/10.1002/cpa.21423
https://doi.org/10.1002/cpa.21423
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.21105/joss.05361
https://doi.org/10.21105/joss.05361

	Summary
	Statement of need
	Examples
	Acknowledgements
	References

