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Summary
Quantum algorithms are an area of intensive research thanks to their potential for speeding
up certain specific tasks exponentially. However, for the time being, high error rates on the
existing hardware realizations preclude the application of many algorithms that are based
on the assumption of fault-tolerant quantum computation. On such noisy intermediate-
scale quantum (NISQ) devices (Preskill, 2018), the exploration of the potential of heuristic
quantum algorithms has attracted much interest. A leading candidate for solving combinatorial
optimization problems is the so-called Quantum Approximate Optimization Algorithm (QAOA)
(Farhi et al., 2014).

QAOA.jl is a Julia package (Bezanson et al., 2017) that implements the mean-field Ap-
proximate Optimization Algorithm (mean-field AOA) (Misra-Spieldenner et al., 2023) - a
quantum-inspired classical algorithm derived from the QAOA via the mean-field approximation.
This novel algorithm is useful in assisting the search for quantum advantage by providing a
tool to discriminate (combinatorial) optimization problems that can be solved classically from
those that cannot. Note that QAOA.jl has already been used during the research leading to
Misra-Spieldenner et al. (2023).

Additionally, QAOA.jl also implements the QAOA efficiently to support the extensive classical
simulations typically required in research on the topic. The corresponding parameterized
circuits are based on Yao.jl (Luo et al., 2020, 2023) and Zygote.jl (Innes et al., 2019, 2023),
making it both fast and automatically differentiable, thus enabling gradient-based optimization.
A number of common optimization problems such as MaxCut, the minimum vertex-cover
problem, the Sherrington-Kirkpatrick model, and the partition problem are pre-implemented to
facilitate scientific benchmarking.

Statement of need
Demonstration of quantum advantage for a real-world problem is still outstanding. Identifying
such a problem and performing the actual demonstration on existing hardware will not be
possible without intensive (classical) simulations. QAOA.jl facilitates this exploration by
offering a classical baseline through the mean-field AOA, complemented by a fast and versatile
implementation of the QAOA. As shown in our benchmarks, QAOA simulations performed
with QAOA.jl are significantly faster than those of PennyLane (Bergholm et al., 2018), one of
its main competitors in automatically differentiable QAOA implementations. While Tensorflow
Quantum (Broughton et al., 2023) supports automatic differentiation, there exists, to the
authors’s knowledge, no dedicated implementation of the QAOA. The class QAOA offered by
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Qiskit (Aleksandrowicz et al., 2019) must be provided with a precomputed gradient operator,
i.e., it does not feature automatic differentiation out of the box.
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