
Netgraph: Publication-quality Network Visualisations
in Python
Paul J. N. Brodersen 1

1 Department of Pharmacology, University of Oxford, United Kingdom
DOI: 10.21105/joss.05372

Software
• Review
• Repository
• Archive

Editor: Rachel Kurchin
Reviewers:

• @ortega2247
• @idoby

Submitted: 16 March 2023
Published: 19 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
The empirical study and scholarly analysis of networks have increased manifold in recent
decades, fuelled by the new prominence of network structures in our lives (the web, social
networks, artificial neural networks, ecological networks, etc.) and the data available on
them. While there are several comprehensive Python libraries for network analysis such as
NetworkX (Hagberg et al., 2008), igraph (Csardi & Nepusz, 2006), and graph-tool (Peixoto,
2014), their inbuilt visualisation capabilities lag behind specialised software solutions such
as Graphviz (Ellson et al., 2002), Cytoscape (Shannon et al., 2003), and Gephi (Bastian et
al., 2009). However, although Python bindings for these applications exist in the form of
PyGraphviz, py4cytoscape, and GephiStreamer, respectively, their outputs are not manipulable
Python objects, which restricts customisation, limits their extensibility, and prevents a seamless
integration within a wider Python application.

Summary
Netgraph is a Python library that aims to complement the existing network analysis libraries
with publication-quality visualisations within the Python ecosystem. To facilitate a seamless
integration, Netgraph supports a variety of input formats, including NetworkX, igraph, and
graph-tool Graph objects. At the time of writing, Netgraph provides the following node layout
algorithms:

• the Fruchterman-Reingold algorithm, a.k.a. the “spring” layout,
• the Sugiyama algorithm, a.k.a. the “dot” layout for directed, acyclic graphs,
• a radial tree layout for directed, acyclic graphs,
• a circular node layout (with optional edge crossing reduction),
• a bipartite node layout for bipartite graphs (with optional edge crossing reduction),
• a layered node layout for multipartite graphs (with optional edge crossing reduction),
• a shell layout for multipartite graphs (with optional edge crossing reduction),
• a community node layout for modular graphs, and
• a “geometric” node layout for graphs with defined edge lengths but unknown node

positions.

Additionally, links or edges between the nodes can be straight, curved (avoiding collisions with
other nodes and edges), or bundled. However, new layout routines are added regularly to
Netgraph; for an up-to-date list, consult the online documentation here.

Uniquely among Python alternatives, Netgraph handles networks with multiple components
gracefully (which otherwise break most node layout routines), and it post-processes the
output of the node layout and edge routing algorithms with several heuristics to increase the
interpretability of the visualisation (reduction of overlaps between nodes, edges, and labels;
edge crossing minimisation and edge unbundling where applicable). The highly customisable

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

1

https://orcid.org/0000-0001-5216-7863
https://doi.org/10.21105/joss.05372
https://github.com/openjournals/joss-reviews/issues/5372
https://github.com/paulbrodersen/netgraph/
https://doi.org/10.5281/zenodo.8138403
rkurchin.github.io
https://orcid.org/0000-0002-2147-4809
https://github.com/ortega2247
https://github.com/idoby
https://creativecommons.org/licenses/by/4.0/
https://netgraph.readthedocs.io/en/latest/node_layout.html
https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

plots are created using Matplotlib (Hunter, 2007), a popular Python plotting library, and the
resulting Matplotlib objects are exposed in an easily queryable format such that they can be
further manipulated and/or animated using standard Matplotlib syntax. The visualisations
can also be altered interactively: nodes and edges can be added on-the-fly through hotkeys,
positioned using the mouse, and (re-)labelled through standard text-entry. For a comprehensive
tutorial on Netgraph’s interactive features, consult the online documentation here.

Netgraph is licensed under the General Public License version 3 (GPLv3). The repository
is hosted on GitHub, and distributed via PyPI and conda-forge. It includes an extensive
automated test suite that can be executed using pytest. The comprehensive documentation –
including a complete API reference as well as numerous examples and tutorials – is hosted on
ReadTheDocs.

Figures

Figure 1: Netgraph’s node layouts

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

2

https://netgraph.readthedocs.io/en/latest/interactivity.html
https://github.com/paulbrodersen/netgraph
https://netgraph.readthedocs.io
https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

Figure 2: Netgraph’s edge layouts and other key features

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

3

https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

A Basic Example
The following script shows a minimum working example. The graph structure is defined by an
edge list, and the visualisation is created using (mostly) default parameters.

Figure 3: Basic example output

import matplotlib.pyplot as plt

from netgraph import Graph

triangle = [

(0, 1),

(1, 2),

(2, 0),

(1, 1), # self-loop

]

Graph(

triangle,

node_labels=True,

arrows=True,

)

plt.show()

Interoperability & Customisability
Netgraph can be easily integrated into existing network analysis workflows as it accepts a
variety of graph structures. The example below uses a NetworkX Graph object, but igraph and
graph-tool objects are also valid inputs, as are plain edge lists and full-rank adjacency matrices.
The output visualisations are created using Matplotlib and can hence form subplots in larger
Matplotlib figures.

Each visualisation can be customised in various ways. Most parameters can be set using
a scalar or string. In this case, the value is applied to all nodes or edges (depending on
the parameter). To style each node or each edge differently, supply a dictionary instead.
Furthermore, Netgraph’s NodeArtist and EdgeArtist classes, i.e. the Python objects that
instruct a renderer to paint nodes and edges onto the canvas, are derived from Matplotlib’s
PathPatch class; similarly, node and edge labels are Matplotlib Text instances. Hence all node
artists, edge artists, and labels can be manipulated using standard matplotlib syntax after the
initial draw.

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

4

https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

Figure 4: Advanced example output

import numpy as np

import matplotlib.pyplot as plt

import networkx as nx

from netgraph import Graph

initialize the figure

fig, ax = plt.subplots(figsize=(6,6))

initialize the graph structure

balanced_tree = nx.balanced_tree(3, 3)

initialize the visualisation

g = Graph(

balanced_tree,

node_layout='radial',

edge_layout='straight',

node_color='crimson',

node_size={node : 4 if node == 0 else 2 for node in balanced_tree},

node_edge_width=0,

edge_color='black',

edge_width=0.5,

node_labels=dict(

zip(balanced_tree, 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz')

),

node_label_offset=0.05,

node_label_fontdict=dict(fontsize=10),

ax=ax,

)

center the label of the root node on the corresponding node artist and make it white

root = 0 # NetworkX graph generator convention

center = g.node_positions[root]

g.node_label_artists[root].set_position(center)

g.node_label_artists[root].set_color('white')

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

5

https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

decrease the node artist alpha parameter from the root to the leaves or the graph

for node in balanced_tree:

distance = np.linalg.norm(center - g.node_positions[node])

g.node_artists[node].set_alpha(1 - distance)

redraw figure to display changes

fig.canvas.draw()

Key Design Decisions
The creation of Netgraph was motivated by the desire to make high-quality, easily customisable,
and reproducible network visualisations, whilst maintaining an extensible code base. To that
end, a key design decision was to have a single reference frame for all node artist and edge
artist attributes that determine their extent (e.g., in the case of a circular node artist, its
position and its radius).

Good data visualisations are both accurate and legible. The legibility of a visualisation is
influenced predominantly by the size of the plot elements, and occlusions between them.
However, there is often tension between these two requirements, as larger plot elements are
more visible but also more likely to cause overlaps with other plot elements. Most data
visualisation tools focus on accuracy and visibility. To that end, they operate in two reference
frames: a data-derived reference frame and a display-derived reference frame. For example, in
a standard line-plot, the data-derived reference frame determines the x and y values of the line.
The thickness of the line, however, scales with the size of the display, and its width (measured
in pixels) remains constant across different figure sizes and aspect ratios. Having two reference
frames ensures that the line (1) is an accurate representation of the data, and (2) is visible
and discernible independent of figure dimensions. The trade-off of this setup is that (1) the
precise extents of plot elements can only be computed after the figure is initialised, and (2)
occlusions are not managed and hence common, for example, if multiple lines are plotted in the
same figure. Nevertheless, most network visualisation tools follow this standard. For example,
NetworkX specifies node positions and edge paths in data coordinates, but uses display units
for node sizes and edge widths.

However, network visualisations differ from other data visualisations in two aspects: (1) the
precise positions of nodes and the precise paths of edges often carry no inherent meaning, and
(2) most figures contain a multitude of node and edge artists instead of just a few lines typically
present in a line-plot. As a consequence, a common goal of most algorithms for node layout,
edge routing, and label placement is to minimize occlusions between different plot elements, as
they reduce the ease with which a visualisation is interpreted. To that end, precise knowledge
of the extent of all plot elements is paramount, motivating the use of a single reference frame.
In Netgraph, this reference frame derives from the data. Specifically, node positions and edge
paths are specified in data units, and node sizes and edge widths are specified in 1/100s of
data units (as this makes the node sizes and edge widths more comparable to typical values in
NetworkX, igraph, and graph-tool). This decouples layout computations from rendering the
figure, simplifies computing the extent of the different plot elements, facilitates the reduction
of overlaps, and makes it possible to create pixel-perfect reproductions independent of display
parameters.

Acknowledgements
We thank GitHub users adleris, Allan L. R. Hansen, chenghuzi, Hamed Mohammadpour, and
Pablo for contributing various bug fixes, as well as ortega2247 and idoby for their thoughtful
reviews of earlier versions of this manuscript and their inspired suggestions, such as adding a
section on “Key Design Decisions”.

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

6

https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

References
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring

and manipulating networks. https://doi.org/10.1609/icwsm.v3i1.13937

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695. http://igraph.org

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., & Woodhull, G. (2002). Graphviz— open
source graph drawing tools. In P. Mutzel, M. Jünger, & S. Leipert (Eds.), Graph drawing
(pp. 483–484). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45848-4_57

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring Network Structure, Dynam-
ics, and Function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.),
Proceedings of the 7th Python in science conference (pp. 11–15).

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Peixoto, T. P. (2014). The graph-tool Python library. Figshare. https://doi.org/10.6084/m9.
figshare.1164194

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,
Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
https://doi.org/10.1101/gr.1239303

Brodersen. (2023). Netgraph: Publication-quality Network Visualisations in Python. Journal of Open Source Software, 8(87), 5372. https:
//doi.org/10.21105/joss.05372.

7

https://doi.org/10.1609/icwsm.v3i1.13937
http://igraph.org
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1101/gr.1239303
https://doi.org/10.21105/joss.05372
https://doi.org/10.21105/joss.05372

	Statement of need
	Summary
	Figures
	A Basic Example
	Interoperability & Customisability
	Key Design Decisions
	Acknowledgements
	References

