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Summary
Many branches of physics, chemistry and Earth sciences build complex materials from simpler
constructs: rocks are composites made up of one or more phases; phases are solutions of more
than one endmember; and endmembers are usually mixtures of more than one element. The
properties of the endmember building blocks at different pressures and temperatures can be
modelled using a wide array of different equations of state. There are also many models for the
averaging of endmember properties within solutions and composite materials. Once calculated,
the physical properties of composite materials can be used in many different ways.

BurnMan is an open source, extensible mineral physics module written in Python. It implements
several different methods to calculate the physical properties of natural materials. The toolbox
has a class-based, modular design that allows users to calculate many low-level properties that
are not easily accessed using existing codes, and to combine various tools in novel, creative
ways. The module includes:

• over a dozen static and thermal equations of state for pure phases;
• commonly-used solution model formalisms (ideal, (a)symmetric, subregular) and a

formalism that allows users to define their own excess energy functions;
• popular endmember and solution datasets for solids and melts, including Holland &

Powell (2011), de Koker et al. (2013) and Stixrude & Lithgow-Bertelloni (2021);
• an anisotropic equation of state (Myhill, 2022);
• a consistent method for combining phases into a composite assemblage, with seismic

averaging schemes including Voigt, Reuss, Voigt-Reuss-Hill and the Hashin-Shtrikman
bounds;

• a common set of methods to output thermodynamic and thermoelastic properties for all
materials;

• a solver to chemically equilibrate composite materials;
• optimal least squares fitting routines for multivariate experimental data with (potentially

correlated) errors. These allow (for example) simultaneous fitting of pure phase and
solution model parameters to experimental volumes, seismic velocities and enthalpies of
formation;

• “Planet” and “Layer” classes that self-consistently calculate gravity, pressure, density,
mass, moment of inertia and seismic velocity profiles given chemical, thermal and dynamic
constraints;

• geothermal profiles from the literature as well as the option to calculate adiabatic profiles
based on mineral assemblage;

• a set of high-level functions which create files readable by seismological and geodynamic
software, including: Mineos (Masters et al., 2011), AxiSEM (Nissen-Meyer et al., 2014)
and ASPECT (Bangerth et al., 2022a, 2022b; Kronbichler et al., 2012); and
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• a Composition class, which provides a framework to convert between mass, molar, and
elemental compositions, convert to different chemical component systems, and add or
subtract components.

The project includes over 40 annotated examples, an extensive suite of unit tests and bench-
marks, and a directory containing user-contributed code from published papers. A multipart
tutorial illustrates key functionality, including the functions required to create the figures in
this paper (https://burnman.readthedocs.io/en/latest/tutorial.html). Using BurnMan requires
only moderate Python skills, and its modular nature means that it can easily be customised.

Statement of need
Earth, planetary and materials scientists are interested in a number of different material
properties, including seismic velocities, densities and heat capacities as functions of pressure
and temperature. Many of these properties are connected to each other by physical laws such
as Maxwell’s relations. Building models of individual phases to compute these properties can
be time-consuming and prone to error. It is desirable to have well-tested and benchmarked
software that makes it easy to calculate the properties of complex composite materials from
existing models, and to parameterize new models from experimental data. Furthermore, there
are many common scientific workflows that require thermodynamic and thermoelastic properties
as input. These are the needs satisfied by the BurnMan module.

The BurnMan project
The focus of BurnMan was originally on the seismic properties of the lower mantle (Cottaar,
Heister, et al., 2014). Its scope has now expanded to encompass the thermodynamic and
thermoelastic properties of any geological and planetary materials (see https://github.com/
geodynamics/burnman/releases for the history of improvements). Pure phase equations of state
are designed to be sufficiently flexible to model real-world materials from the Earth’s core to the
shallowest parts of the crust (e.g. Figure 1). Solution model formulations with varying levels
of non-ideality are included (e.g. Figure 2), including both Gibbs and Helmholtz formulations
(Myhill, 2018). Functions are provided to convert solution models from one endmember basis
to another (Myhill & Connolly, 2021). A Composite class allows calculation of the properties
of assemblages containing several phases and includes several seismic averaging schemes.

Figure 1: Heat capacity and bulk sound velocities of quartz through the alpha-beta quartz transition as
found in (Stixrude & Lithgow-Bertelloni, 2011). This transition is modelled via a Landau-type model.
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Figure 2: Properties of pyrope-grossular garnet at 1 GPa according to a published model (Jennings &
Holland, 2015), as output by BurnMan. The excess Gibbs energy is useful for calculating phase equilibria
by Gibbs minimization, while the endmember activities can be used to determine equilibrium via the
equilibrium relations (Holland & Powell, 1998).

BurnMan also includes planetary Layer and Planet classes that can be used to construct
planetary models with self-consistent pressure, gravity and density profiles and calculate seismic
properties through those bodies. Figure 3 shows the output from a model that resembles Earth.
Tools are provided to compare predicted seismic properties with published seismic models of
the Earth, and to produce input files to compute synthetic seismic data using other codes,
including AxiSEM (Nissen-Meyer et al., 2014) and Mineos (Masters et al., 2011; Woodhouse,
1988).
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Figure 3: A 1D profile through Planet Zog, a planet much like Earth, with an inner and outer core
(blue and orange layers), isentropic convecting lower and upper mantle (green and red), and a depleted
lithosphere (lilac) split into mantle and crust. The mineralogy/composition of each layer is chosen by the
user. Zog has the same mass (5.972e+24 kg) and moment of inertia factor (0.3307) as Earth. BurnMan

ensures that the gravity and pressure profiles satisfy hydrostatic equilibrium, and allows different layers
to have different thermal profiles, including an isentropic profile with thermal boundary layers (shown
here for the upper mantle, lower mantle and for the core). Depth dependent changes to density, gravity,
pressure (solid blue lines) are compared with the Preliminary Reference Earth Model (PREM; dotted
orange line, (Dziewonski & Anderson, 1981)). The computed geotherm is compared to several from the
literature (Alfe et al., 2007; Anderson, 1982; Anzellini et al., 2013; Brown & Shankland, 1981; Stacey,
1977).

BurnMan also includes many utility functions. These include functions that fit parameters for
pure phase and solution models to experimental data including full error propagation (Figure 4).
Other fitting functions include fit_composition_to_solution() and
fit_phase_proportions_to_bulk_composition() that use weighted constrained least squares
using cvxpy (Diamond & Boyd, 2016) to estimate endmember or phase proportions given a
bulk composition. These fitting functions apply appropriate non-negativity constraints (i.e. that
no species can have negative proportions on a site, and that no phase can have a negative
abundance in the bulk). An example of fit_phase_proportions_to_bulk_composition()

that uses real experimental data (Bertka & Fei, 1997) is shown in Figure 5. Loss of an
independent component from the bulk composition can be tested by adding another phase
with the composition of that component (e.g. Fe) and checking that the amount of that phase
is zero within uncertainties.
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Figure 4: Optimized fit of a PV equation of state (Holland & Powell, 2011) to stishovite data (Andrault
et al., 2003), including 95% confidence intervals on both the volume and the bulk modulus.

Figure 5: Mineral phase proportions in the mantle of Mars, estimated by using the method of constrained
least squares on high pressure experimental data (Bertka & Fei, 1997). Weighted residuals (misfits) are
also shown, indicating that the majority of experimental run products are consistent with the reported
starting composition.

BurnMan does not attempt to replicate Gibbs minimization codes, of which there are many, such
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as PerpleX (Connolly, 2009), MELTS (Ghiorso & Sack, 1995), MageMin (Riel et al., 2022),
TheriakDomino (Capitani & Petrakakis, 2010), HeFESTo (Stixrude & Lithgow-Bertelloni, 2021)
and FactSAGE (Bale et al., 2002). Instead, it provides two methods to deal with the problem
of thermodynamic equilibrium: (1) reading in a pressure-temperature table of precalculated
properties into a Material class that allows derivative properties to be calculated, and (2)
a function called equilibrate() that equilibrates a known assemblage under user-defined
constraints. This function requires an assemblage (e.g. olivine, garnet and orthopyroxene), a
starting bulk composition, desired equality constraints, and optionally one or more compositional
degrees of freedom. The equilibrate function solves the equilibrium relations (Holland & Powell,
1998) using a damped Newton root finder (Nowak & Weimann, 1991).

The equilibrate() function allows the user to select from a number of equality constraints,
including fixed pressure, temperature, entropy or volume, or compositional equalities such
as a fixed molar fraction of a phase, or a certain ratio of Mg and Fe on a particular site.
The number of constraints required is two at fixed bulk composition, and one more for each
degree of compositional freedom. An example of the use of the equilibrate function is shown
in Figure 6. Full details may be found in the manual and tutorial.

Figure 6: The olivine phase diagram at three different temperatures as computed using the equilibrate
routines in BurnMan. The solution model properties are taken from the literature (Stixrude & Lithgow-
Bertelloni, 2011).

Past and ongoing research projects
In addition to mantle studies (Ballmer et al., 2017; Cottaar, Li, et al., 2014; Houser et al.,
2020; Jenkins et al., 2017; Thomson et al., 2019), BurnMan has been used to investigate
Earth’s core (Irving et al., 2018), in phase equilibria studies (Ishii et al., 2019; Myhill et al.,
2017), to develop new models for anisotropic thermodynamics (Myhill, 2022), to constrain the
interiors of exoplanets (Unterborn et al., 2016; Unterborn & Panero, 2019), and to provide
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input for geodynamic simulations (Dannberg et al., 2021; Heister et al., 2017).
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