
Software Design and User Interface of ESPnet-SE++:
Speech Enhancement for Robust Speech Processing

Yen-Ju Lu 1*, Xuankai Chang 2*, Chenda Li 3, Wangyou Zhang 3,
Samuele Cornell 2,4, Zhaoheng Ni5, Yoshiki Masuyama2,6, Brian Yan2,
Robin Scheibler 7, Zhong-Qiu Wang 2, Yu Tsao 8, Yanmin Qian 3, and
Shinji Watanabe 2¶

1 Johns Hopkins University, USA 2 Carnegie Mellon University, USA 3 Shanghai Jiao Tong University,
Shanghai 4 Universita‘ Politecnica delle Marche, Italy 5 Meta AI, USA 6 Tokyo Metropolitan University,
Japan 7 LINE Corporation, Japan 8 Academia Sinica, Taipei ¶ Corresponding author * These authors
contributed equally.

DOI: 10.21105/joss.05403

Software
• Review
• Repository
• Archive

Editor: Fabian-Robert Stöter
Reviewers:

• @joimort
• @justusschock

Submitted: 07 September 2022
Published: 20 November 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0). Figure 1: The Joint-task Systems of SSE with ASR, ST, and SLU in ESPnet-SE++.

Summary
This paper presents the software design and user interface of ESPnet-SE++, a new speech
separation and enhancement (SSE) module of the ESPnet toolkit. ESPnet-SE++ significantly
expands the functionality of ESPnet-SE (Li et al., 2021) with several new models(Chen et al.,
2017; Dang et al., 2022; Hershey et al., 2016; Hu et al., 2020; Li et al., 2022; Lu, Cornell, et al.,
2022; Luo et al., 2019; Takahashi et al., 2019; Tan et al., 2021), loss functions (Boeddeker et
al., 2021; Le Roux et al., 2019; Luo & Mesgarani, 2018; Scheibler, 2022), and training recipes
as shown in (Lu, Chang, et al., 2022). Crucially, it features a new, redesigned interface, which
allows for a flexible combination of SSE front-ends with many downstream tasks, including
automatic speech recognition (ASR), speaker diarization (SD), speech translation (ST), and
spoken language understanding (SLU).

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

1

https://orcid.org/0000-0001-8400-4188
https://orcid.org/0000-0002-5221-5412
https://orcid.org/0000-0003-0299-9914
https://orcid.org/0000-0003-4500-3515
https://orcid.org/0000-0002-5358-1844
https://orcid.org/0000-0002-5205-8365
https://orcid.org/0000-0002-4204-9430
https://orcid.org/0000-0001-6956-0418
https://orcid.org/0000-0002-0314-3790
https://orcid.org/0000-0002-5970-8631
https://doi.org/10.21105/joss.05403
https://github.com/openjournals/joss-reviews/issues/5403
https://github.com/espnet/espnet
https://doi.org/10.5281/zenodo.10048174
https://faroit.com/
https://orcid.org/0000-0002-2534-1165
https://github.com/joimort
https://github.com/justusschock
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05403


Statement of need
ESPnet is an open-source toolkit for speech processing, including several ASR, text-to-speech
(TTS) (Hayashi et al., 2020), ST (Inaguma et al., 2020), machine translation (MT), SLU (Arora
et al., 2022), and SSE recipes (Watanabe et al., 2018). Compared with other open-source
SSE toolkits, such as Nussl (Manilow et al., 2018), Onssen (Ni, 2019), Asteroid (Pariente et
al., 2020), and SpeechBrain (Ravanelli et al., 2021), the modularized design in ESPnet-SE++
allows for the joint training of SSE modules with other tasks. Currently, ESPnet-SE++
supports 20 SSE recipes with 24 different enhancement/separation models.

ESPnet-SE++ Recipes and Software Structure

ESPNet-SE++ Recipes for SSE and Joint-Task
For each task, ESPnet-SE++, following the ESPnet2 style, provides common scripts which
are carefully designed to work out-of-the-box with a wide variety of corpora. The recipes for
different corpora are under the egs2/ folder. Under the egs2/TEMPLATE folder, the common
scripts enh1/enh.sh and enh_asr1/enh_asr.sh are shared for all the SSE and joint-task
recipes. The directory structure can be found in TEMPLATE/enh_asr1/README.md.

Common Scripts

enh.sh contains 13 stages, and the details for the scripts can be found in TEM-
PLATE/enh1/README.md.

enh_asr.sh contains 17 stages, and the details for the scripts can be found in TEM-
PLATE/enh_asr1/README.md. The enh_diar.sh and enh_st.sh are similar to it.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

2

https://github.com/espnet/espnet
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh_asr1/README.md
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh1/README.md
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh1/README.md
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh_asr1/README.md
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh_asr1/README.md
https://doi.org/10.21105/joss.05403


Training Configuration

SSE Task Training Configuration

An example of an enhancement task for the CHiME-4 enh1 recipe is configured as
conf/tuning/train_enh_dprnn_tasnet.yaml. This file includes the specific types of encoder,
decoder, separator, and their respective settings. Furthermore, the file also defines the
training setup and criterions.

Joint-Task Training Configuration

An example of joint-task training configuration is the CHiME-4 enh_asr1 recipe, configured
as conf/tuning/train_enh_asr_convtasnet.yaml. This joint-task comprises of a front-end
SSE model and a back-end ASR model. The configuration file includes specifications for
the encoder, decoder, separator, and criterions of both the SSE and ASR models,using
prefixes such as enh_ and asr_.

ESPNet-SE++ Software Structure for SSE Task
The directory structure for the SSE python files can be found in TEMPLATE/enh1/README.md.
Additionally, the UML diagram for the enhancement-only task in ESPNet-SE++ is provided
below.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

3

https://github.com/espnet/espnet/blob/master/egs2/chime4/enh1/conf/tuning/train_enh_dprnn_tasnet.yaml
https://github.com/espnet/espnet/blob/master/egs2/chime4/enh_asr1/conf/tuning/train_enh_asr_convtasnet_si_snr_fbank_transformer_lr2e-3_accum2_warmup20k_specaug.yaml
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh1/README.md
https://doi.org/10.21105/joss.05403


Figure 2: UML Diagram for Speech Separation and Enhancement in ESPnet-SE++

SSE Executable Code bin/*

bin/enh_train.py

As the main interface for the SSE training stage of enh.sh, enh_train.py takes the training
parameters and model configurations from the arguments and calls

EnhancementTask.main(...)

to build an SSE object ESPnetEnhancementModel for training the SSE model according to the
model configuration.

bin/enh_inference.py

The inference function in enh_inference.py creates a

class SeparateSpeech

object with the data-iterator for testing and validation. During its initialization, this class
instantiate an SSE object ESPnetEnhancementModel based on a pair of configuration and a
pre-trained SSE model.

bin/enh_scoring.py

def scoring(..., ref_scp, inf_scp, ...)

The SSE scoring functions calculates several popular objective scores such as SI-SDR (Le
Roux et al., 2019), STOI (Taal et al., 2011), SDR and PESQ (Rix et al., 2001), based on the
reference signal and processed speech pairs.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

4

https://doi.org/10.21105/joss.05403


SSE Control Class tasks/enh.py

class EnhancementTask(AbsTask)

EnhancementTask is a control class which is designed for SSE tasks. It contains class methods
for building and training an SSE model. Class method build_model creates and returns an
SSE object ESPnetEnhancementModel.

SSE Modules enh/espnet_model.py

class ESPnetEnhancementModel(AbsESPnetModel)

ESPnetEnhancementModel is the base class for any ESPnet-SE++ SSE model. Since it inherits
the same abstract base class AbsESPnetModel, it is well-aligned with other tasks such as ASR,
TTS, ST, and SLU, bringing the benefits of cross-tasks combination.

def forward(self, speech_mix, speech_ref, ...)

The forward function of ESPnetEnhancementModel follows the general design in the ESPnet
single-task modules, which processes speech and only returns losses for Trainer to update the
model.

def forward_enhance(self, speech_mix, ...)

def forward_loss(self, speech_pre, speech_ref, ...)

For more flexible combinations, the forward_enhance function returns the enhanced speech,
and the forward_loss function returns the loss. The joint-training methods take the enhanced
speech as the input for the downstream task and the SSE loss as a part of the joint-training
loss.

ESPNet-SE++ Software Structure for Joint-Task
The directory structure for the SSE python files can be found in TEMPLATE/enh_asr1/README.md.
Furthermore, the UML diagram for the joint-task in ESPNet-SE++ is displayed below.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

5

https://github.com/espnet/espnet/blob/master/espnet2/train/trainer.py#L87-L108
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh_asr1/README.md
https://doi.org/10.21105/joss.05403


Figure 3: UML Diagram for Joint-Task in ESPnet-SE++

Joint-Task Executable Code bin/*

bin/enh_s2t_train.py

Similarly to the interface of SSE training code enh_train.py, enh_s2t_train.py takes the
training and modular parameters from the scripts, and calls

tasks.enh_s2t.EnhS2TTask.main(...)

to build a joint-task object for training the joint-model based on a configuration with both
SSE and s2t models setting with or without pre-trained checkpoints.

bin/asr_inference.py, bin/diar_inference.py, and bin/st_inference.py

The inference function in asr_inference.py, diar_inference.py, and st_inference.py

builds and call a

class Speech2Text

class DiarizeSpeech

object with the data-iterator for testing and validation. During their initialization, the classes
build a joint-task object ESPnetEnhS2TModel with pre-trained joint-task models and configura-
tions.

Joint-task Control Class tasks/enh_s2t.py

class EnhS2TTask(AbsTask)

class EnhS2TTask is designed for joint-task model. The subtask models are created and sent
into the ESPnetEnhS2TModel to create a joint-task object.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

6

https://doi.org/10.21105/joss.05403


Joint-Task Modules enh/espnet_enh_s2t_model.py

class ESPnetEnhS2TModel(AbsESPnetModel)

The ESPnetEnhS2TModel takes a front-end enh_model, and a back-end s2t_model (such as
ASR, SLU, ST, and SD models) as inputs to build a joint-model.

The forward function of the class follows the general design in ESPnet2:

def forward(self, speech_mix, speech_ref, ...)

which processes speech and only returns losses for Trainer to update the model.

ESPnet-SE++ User Interface

Building a New Recipe from Scratch
Since ESPnet2 provides common scripts such as enh.sh and enh_asr.sh for each task, users
only need to create local/data.sh for the data preparation of a new corpus. The generated
data follows the Kaldi-style structure (Povey et al., 2011):

The detailed instructions for data preparation and building new recipes in espnet2 are described
in the link.

Inference with Pre-trained Models
Pretrained models from ESPnet are provided on HuggingFace and Zenodo. Users can download
and infer with the models.model_name in the following section should be huggingface_id or
one of the tags in the table.csv in espnet_model_zoo . Users can also directly provide a
Zenodo URL or a HuggingFace URL.

Inference API

The inference functions are from the enh_inference and enh_asr_inference in the executable
code bin/

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

7

https://github.com/espnet/espnet/blob/master/espnet2/train/trainer.py#L87-L108
https://github.com/espnet/espnet/tree/master/egs2/TEMPLATE
https://github.com/espnet/espnet_model_zoo/blob/master/espnet_model_zoo/table.csv
https://github.com/espnet/espnet_model_zoo
https://doi.org/10.21105/joss.05403


Calling SeparateSpeech and Speech2Text with unprocessed audios returns the separated
speech and their recognition results.

SSE

Joint-Task

The details for downloading models and inference are described in espnet_model_zoo.

Demonstrations
The demonstrations of ESPnet-SE can be found in the following google colab links:

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

8

https://github.com/espnet/espnet_model_zoo
https://doi.org/10.21105/joss.05403


• ESPnet SSE Demonstration: CHiME-4 and WSJ0-2mix
• ESPnet-SE++ Joint-Task Demonstration: L3DAS22 Challenge and SLURP-Spatialized

Development plan
The development plan of the ESPnet-SE++ can be found in Development plan for ESPnet2
speech enhancement. In addition, we will explore the combinations with other front-end tasks,
such as using ASR as a front-end model and TTS as a back-end model for speech-to-speech
conversion.

Conclusions
In this paper, we introduce the software structure and the user interface of ESPnet-SE++,
including the SSE task and joint-task models. ESPnet-SE++ provides general recipes for
training models on different corpus and a simple way for adding new recipes. The joint-task
implementation further shows that the modularized design improves the flexibility of ESPnet.

Acknowledgement
This work used the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns
et al., 2014), which is supported by NSF grant number ACI-1548562. Specifically, it used the
Bridges system (Nystrom et al., 2015), which is supported by NSF award number ACI-1445606,
at the Pittsburgh Supercomputing Center (PSC).

References
Arora, S., Dalmia, S., Denisov, P., Chang, X., Ueda, Y., Peng, Y., Zhang, Y., Kumar,

S., Ganesan, K., & Yan, W., B. (2022). ESPnet-SLU: Advancing spoken language
understanding through ESPnet. 2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 7167–7171. https://doi.org/10.1109/icassp43922.2022.
9747674

Boeddeker, C., Zhang, W., Nakatani, T., Kinoshita, K., Ochiai, T., Delcroix, M., Kamo,
N., Qian, Y., & Haeb-Umbach, R. (2021). Convolutive transfer function invariant SDR
training criteria for multi-channel reverberant speech separation. 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 8428–8432. https:
//doi.org/10.1109/icassp39728.2021.9414661

Chen, Z., Luo, Y., & Mesgarani, N. (2017). Deep attractor network for single-microphone
speaker separation. 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 246–250. https://doi.org/10.1109/icassp.2017.7952155

Dang, F., Chen, H., & Zhang, P. (2022). DPT-FSNet: Dual-path transformer based full-
band and sub-band fusion network for speech enhancement. 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 6857–6861. https:
//doi.org/10.1109/icassp43922.2022.9746171

Hayashi, T., Yamamoto, R., Inoue, K., Yoshimura, T., Watanabe, S., Toda, T., Takeda,
K., & Zhang, X., Y. Tan. (2020). ESPnet-TTS: Unified, reproducible, and integratable
open source end-to-end text-to-speech toolkit. 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 7654–7658. https://doi.org/10.1109/
icassp40776.2020.9053512

Hershey, J. R., Chen, Z., Le Roux, J., & Watanabe, S. (2016). Deep clustering: Discriminative
embeddings for segmentation and separation. 2016 IEEE International Conference on

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

9

https://colab.research.google.com/drive/1fjRJCh96SoYLZPRxsjF9VDv4Q2VoIckI?usp=sharing
https://colab.research.google.com/drive/1hAR5hp8i0cBIMeku8LbGXseBBaF2gEyO#scrollTo=0kIjHfagi4T1
https://github.com/espnet/espnet/issues/2200
https://github.com/espnet/espnet/issues/2200
https://doi.org/10.1109/icassp43922.2022.9747674
https://doi.org/10.1109/icassp43922.2022.9747674
https://doi.org/10.1109/icassp39728.2021.9414661
https://doi.org/10.1109/icassp39728.2021.9414661
https://doi.org/10.1109/icassp.2017.7952155
https://doi.org/10.1109/icassp43922.2022.9746171
https://doi.org/10.1109/icassp43922.2022.9746171
https://doi.org/10.1109/icassp40776.2020.9053512
https://doi.org/10.1109/icassp40776.2020.9053512
https://doi.org/10.21105/joss.05403


Acoustics, Speech and Signal Processing (ICASSP), 31–35. https://doi.org/10.1109/icassp.
2016.7471631

Hu, Y., Liu, Y., Lv, S., Xing, M., Zhang, S., Fu, Y., Wu, J., Zhang, B., & Xie, L. (2020).
DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement.
Proceedings of Interspeech, 2472–2476. https://doi.org/10.21437/interspeech.2020-2537

Inaguma, H., Kiyono, S., Duh, K., Karita, S., Soplin, N. E. Y., Hayashi, T., & Watanabe,
S. (2020). ESPnet-ST: All-in-one speech translation toolkit. Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
302–311. https://doi.org/10.18653/v1/2020.acl-demos.34

Le Roux, J., Wisdom, S., Erdogan, H., & Hershey, J. R. (2019). SDR – half-baked or well
done? 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 626–630. https://doi.org/10.1109/icassp.2019.8683855

Li, C., Shi, J., Zhang, W., Subramanian, A. S., Chang, X., Kamo, N., Hira, M., Hayashi,
T., Boeddeker, C., & Chen, S., Z. Watanabe. (2021). ESPnet-SE: End-to-end speech
enhancement and separation toolkit designed for ASR integration. 2021 IEEE Spoken
Language Technology Workshop (SLT), 785–792. https://doi.org/10.1109/slt48900.2021.
9383615

Li, C., Yang, L., Wang, W., & Qian, Y. (2022). SkiM: Skipping memory lstm for low-latency
real-time continuous speech separation. 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 681–685. https://doi.org/10.1109/icassp43922.
2022.9746372

Lu, Y. J., Chang, X., Li, C., Zhang, W., Cornell, S., Ni, Z., Masuyama, Y., Yan, B., Scheibler,
R., Wang, Z. Q., Tsao, Y., & Qian Y. Watanabe, S. (2022). ESPnet-SE++: Speech
enhancement for robust speech recognition, translation, and understanding. Proceedings
of Interspeech, 5458–5462. https://doi.org/10.21437/interspeech.2022-10727

Lu, Y. J., Cornell, S., Chang, X., Zhang, W., Li, C., Ni, Z., Wang, Z., & Watanabe, S. (2022).
Towards low-distortion multi-channel speech enhancement: The ESPNET-se submission
to the L3DAS22 challenge. 2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 9201–9205. https://doi.org/10.1109/icassp43922.2022.
9747146

Luo, Y., Han, C., Mesgarani, N., Ceolini, E., & Liu, S. (2019). FaSNet: Low-latency
adaptive beamforming for multi-microphone audio processing. 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 260–267. https://doi.org/10.
1109/asru46091.2019.9003849

Luo, Y., & Mesgarani, N. (2018). TaSNet: Time-domain audio separation network for real-time,
single-channel speech separation. 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 696–700. https://doi.org/10.1109/icassp.2018.8462116

Manilow, E., Seetharaman, P., & Pardo, B. (2018). The northwestern university source
separation library. International Society for Music Information Retrieval (ISMIR), 297–305.
https://doi.org/10.1163/1872-9037_afco_asc_1322

Ni, M. I., Zhaoheng Mandel. (2019). ONSSEN: An open-source speech separation and
enhancement library. arXiv Preprint arXiv:1911.00982.

Nystrom, N. A., Levine, M. J., Roskies, R. Z., & Scott, J. R. (2015). Bridges: A uniquely
flexible HPC resource for new communities and data analytics. Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure,
1–8. https://doi.org/10.1145/2792745.2792775

Pariente, M., Cornell, S., Cosentino, J., Sivasankaran, S., Tzinis, E., Heitkaemper, J., Olvera,
M., Stöter, F. R., Hu, M., Martıń-Doñas, J. M., Ditter, D., Frank, A., Deleforge, A.,

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

10

https://doi.org/10.1109/icassp.2016.7471631
https://doi.org/10.1109/icassp.2016.7471631
https://doi.org/10.21437/interspeech.2020-2537
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.1109/icassp.2019.8683855
https://doi.org/10.1109/slt48900.2021.9383615
https://doi.org/10.1109/slt48900.2021.9383615
https://doi.org/10.1109/icassp43922.2022.9746372
https://doi.org/10.1109/icassp43922.2022.9746372
https://doi.org/10.21437/interspeech.2022-10727
https://doi.org/10.1109/icassp43922.2022.9747146
https://doi.org/10.1109/icassp43922.2022.9747146
https://doi.org/10.1109/asru46091.2019.9003849
https://doi.org/10.1109/asru46091.2019.9003849
https://doi.org/10.1109/icassp.2018.8462116
https://doi.org/10.1163/1872-9037_afco_asc_1322
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.21105/joss.05403


& Vincent, E. (2020). Asteroid: The PyTorch-based audio source separation toolkit for
researchers. Proceedings of Interspeech, 2637–2641. https://doi.org/10.21437/interspeech.
2020-1673

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P., Silovsky´, J., & Stemmer, K., G. Vesely. (2011). The
Kaldi speech recognition toolkit. IEEE 2011 Workshop on Automatic Speech Recognition
and Understanding. https://doi.org/10.15199/48.2016.11.70

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C.,
Dawalatabad, N., Heba, A., Zhong, J., Chou, J. C., Yeh, S. L., Fu, S. W., Liao, C. F.,
Rastorgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., & Mori R. D. Bengio, Y. (2021).
SpeechBrain: A general-purpose speech toolkit. arXiv Preprint arXiv:2106.04624.

Rix, A. W., Beerends, J. G., Hollier, M. P., & Hekstra, A. P. (2001). Perceptual evaluation
of speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No. 01CH37221), 2, 749–752. https://doi.org/10.1109/
icassp.2001.941023

Scheibler, R. (2022). SDR — medium rare with fast computations. 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 701–705. https:
//doi.org/10.1109/icassp43922.2022.9747473

Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2011). An algorithm for intelligibility
prediction of time–frequency weighted noisy speech. IEEE Transactions on Audio, Speech,
and Language Processing, 19(7), 2125–2136. https://doi.org/10.1109/tasl.2011.2114881

Takahashi, N., Parthasaarathy, S., Goswami, N., & Mitsufuji, Y. (2019). Recursive speech
separation for unknown number of speakers. Interspeech 2019, 1348–1352. https://doi.
org/10.21437/interspeech.2019-1550

Tan, K., Zhang, X., & Wang, D. (2021). Deep learning based real-time speech enhancement
for dual-microphone mobile phones. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 29, 1853–1863. https://doi.org/10.1109/taslp.2021.3082318

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V.,
Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., & Wilkins-Diehr, N.
(2014). XSEDE: Accelerating scientific discovery. Computing in Science & Engineering,
16(5), 62–74. https://doi.org/10.1109/mcse.2014.80

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N. E. Y.,
Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., & Ochiai, T. (2018). ESPnet:
End-to-end speech processing toolkit. Proceedings of Interspeech, 2207–2211. https:
//doi.org/10.21437/interspeech.2018-1456

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

11

https://doi.org/10.21437/interspeech.2020-1673
https://doi.org/10.21437/interspeech.2020-1673
https://doi.org/10.15199/48.2016.11.70
https://doi.org/10.1109/icassp.2001.941023
https://doi.org/10.1109/icassp.2001.941023
https://doi.org/10.1109/icassp43922.2022.9747473
https://doi.org/10.1109/icassp43922.2022.9747473
https://doi.org/10.1109/tasl.2011.2114881
https://doi.org/10.21437/interspeech.2019-1550
https://doi.org/10.21437/interspeech.2019-1550
https://doi.org/10.1109/taslp.2021.3082318
https://doi.org/10.1109/mcse.2014.80
https://doi.org/10.21437/interspeech.2018-1456
https://doi.org/10.21437/interspeech.2018-1456
https://doi.org/10.21105/joss.05403

	Summary
	Statement of need
	ESPnet-SE++ Recipes and Software Structure
	ESPNet-SE++ Recipes for SSE and Joint-Task
	Common Scripts
	Training Configuration

	ESPNet-SE++ Software Structure for SSE Task
	SSE Executable Code bin/*
	SSE Control Class tasks/enh.py
	SSE Modules enh/espnet_model.py

	ESPNet-SE++ Software Structure for Joint-Task
	Joint-Task Executable Code bin/*
	Joint-task Control Class tasks/enh_s2t.py
	Joint-Task Modules enh/espnet_enh_s2t_model.py


	ESPnet-SE++ User Interface
	Building a New Recipe from Scratch
	Inference with Pre-trained Models
	Inference API


	Demonstrations
	Development plan
	Conclusions
	Acknowledgement
	References

