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Summary
This paper presents the software design and user interface of ESPnet-SE++, a new speech
separation and enhancement (SSE) module of the ESPnet toolkit. ESPnet-SE++ significantly
expands the functionality of ESPnet-SE (Li et al., 2021) with several new models(Chen et al.,
2017; Dang et al., 2022; Hershey et al., 2016; Hu et al., 2020; Li et al., 2022; Lu, Cornell, et al.,
2022; Luo et al., 2019; Takahashi et al., 2019; Tan et al., 2021), loss functions (Boeddeker et
al., 2021; Le Roux et al., 2019; Luo & Mesgarani, 2018; Scheibler, 2022), and training recipes
as shown in (Lu, Chang, et al., 2022). Crucially, it features a new, redesigned interface, which
allows for a flexible combination of SSE front-ends with many downstream tasks, including
automatic speech recognition (ASR), speaker diarization (SD), speech translation (ST), and
spoken language understanding (SLU).
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Statement of need
ESPnet is an open-source toolkit for speech processing, including several ASR, text-to-speech
(TTS) (Hayashi et al., 2020), ST (Inaguma et al., 2020), machine translation (MT), SLU (Arora
et al., 2022), and SSE recipes (Watanabe et al., 2018). Compared with other open-source
SSE toolkits, such as Nussl (Manilow et al., 2018), Onssen (Ni, 2019), Asteroid (Pariente et
al., 2020), and SpeechBrain (Ravanelli et al., 2021), the modularized design in ESPnet-SE++
allows for the joint training of SSE modules with other tasks. Currently, ESPnet-SE++
supports 20 SSE recipes with 24 different enhancement/separation models.

ESPnet-SE++ Recipes and Software Structure

ESPNet-SE++ Recipes for SSE and Joint-Task
For each task, ESPnet-SE++, following the ESPnet2 style, provides common scripts which
are carefully designed to work out-of-the-box with a wide variety of corpora. The recipes for
different corpora are under the egs2/ folder. Under the egs2/TEMPLATE folder, the common
scripts enh1/enh.sh and enh_asr1/enh_asr.sh are shared for all the SSE and joint-task
recipes. The directory structure can be found in TEMPLATE/enh_asr1/README.md.

Common Scripts

enh.sh contains 13 stages, and the details for the scripts can be found in TEM-
PLATE/enh1/README.md.

enh_asr.sh contains 17 stages, and the details for the scripts can be found in TEM-
PLATE/enh_asr1/README.md. The enh_diar.sh and enh_st.sh are similar to it.
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Training Configuration

SSE Task Training Configuration

An example of an enhancement task for the CHiME-4 enh1 recipe is configured as
conf/tuning/train_enh_dprnn_tasnet.yaml. This file includes the specific types of encoder,
decoder, separator, and their respective settings. Furthermore, the file also defines the
training setup and criterions.

Joint-Task Training Configuration

An example of joint-task training configuration is the CHiME-4 enh_asr1 recipe, configured
as conf/tuning/train_enh_asr_convtasnet.yaml. This joint-task comprises of a front-end
SSE model and a back-end ASR model. The configuration file includes specifications for
the encoder, decoder, separator, and criterions of both the SSE and ASR models,using
prefixes such as enh_ and asr_.

ESPNet-SE++ Software Structure for SSE Task
The directory structure for the SSE python files can be found in TEMPLATE/enh1/README.md.
Additionally, the UML diagram for the enhancement-only task in ESPNet-SE++ is provided
below.
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Figure 2: UML Diagram for Speech Separation and Enhancement in ESPnet-SE++

SSE Executable Code bin/*

bin/enh_train.py

As the main interface for the SSE training stage of enh.sh, enh_train.py takes the training
parameters and model configurations from the arguments and calls

EnhancementTask.main(...)

to build an SSE object ESPnetEnhancementModel for training the SSE model according to the
model configuration.

bin/enh_inference.py

The inference function in enh_inference.py creates a

class SeparateSpeech

object with the data-iterator for testing and validation. During its initialization, this class
instantiate an SSE object ESPnetEnhancementModel based on a pair of configuration and a
pre-trained SSE model.

bin/enh_scoring.py

def scoring(..., ref_scp, inf_scp, ...)

The SSE scoring functions calculates several popular objective scores such as SI-SDR (Le
Roux et al., 2019), STOI (Taal et al., 2011), SDR and PESQ (Rix et al., 2001), based on the
reference signal and processed speech pairs.
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SSE Control Class tasks/enh.py

class EnhancementTask(AbsTask)

EnhancementTask is a control class which is designed for SSE tasks. It contains class methods
for building and training an SSE model. Class method build_model creates and returns an
SSE object ESPnetEnhancementModel.

SSE Modules enh/espnet_model.py

class ESPnetEnhancementModel(AbsESPnetModel)

ESPnetEnhancementModel is the base class for any ESPnet-SE++ SSE model. Since it inherits
the same abstract base class AbsESPnetModel, it is well-aligned with other tasks such as ASR,
TTS, ST, and SLU, bringing the benefits of cross-tasks combination.

def forward(self, speech_mix, speech_ref, ...)

The forward function of ESPnetEnhancementModel follows the general design in the ESPnet
single-task modules, which processes speech and only returns losses for Trainer to update the
model.

def forward_enhance(self, speech_mix, ...)

def forward_loss(self, speech_pre, speech_ref, ...)

For more flexible combinations, the forward_enhance function returns the enhanced speech,
and the forward_loss function returns the loss. The joint-training methods take the enhanced
speech as the input for the downstream task and the SSE loss as a part of the joint-training
loss.

ESPNet-SE++ Software Structure for Joint-Task
The directory structure for the SSE python files can be found in TEMPLATE/enh_asr1/README.md.
Furthermore, the UML diagram for the joint-task in ESPNet-SE++ is displayed below.

Lu et al. (2023). Software Design and User Interface of ESPnet-SE++: Speech Enhancement for Robust Speech Processing. Journal of Open
Source Software, 8(91), 5403. https://doi.org/10.21105/joss.05403.

5

https://github.com/espnet/espnet/blob/master/espnet2/train/trainer.py#L87-L108
https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/enh_asr1/README.md
https://doi.org/10.21105/joss.05403


Figure 3: UML Diagram for Joint-Task in ESPnet-SE++

Joint-Task Executable Code bin/*

bin/enh_s2t_train.py

Similarly to the interface of SSE training code enh_train.py, enh_s2t_train.py takes the
training and modular parameters from the scripts, and calls

tasks.enh_s2t.EnhS2TTask.main(...)

to build a joint-task object for training the joint-model based on a configuration with both
SSE and s2t models setting with or without pre-trained checkpoints.

bin/asr_inference.py, bin/diar_inference.py, and bin/st_inference.py

The inference function in asr_inference.py, diar_inference.py, and st_inference.py

builds and call a

class Speech2Text

class DiarizeSpeech

object with the data-iterator for testing and validation. During their initialization, the classes
build a joint-task object ESPnetEnhS2TModel with pre-trained joint-task models and configura-
tions.

Joint-task Control Class tasks/enh_s2t.py

class EnhS2TTask(AbsTask)

class EnhS2TTask is designed for joint-task model. The subtask models are created and sent
into the ESPnetEnhS2TModel to create a joint-task object.
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Joint-Task Modules enh/espnet_enh_s2t_model.py

class ESPnetEnhS2TModel(AbsESPnetModel)

The ESPnetEnhS2TModel takes a front-end enh_model, and a back-end s2t_model (such as
ASR, SLU, ST, and SD models) as inputs to build a joint-model.

The forward function of the class follows the general design in ESPnet2:

def forward(self, speech_mix, speech_ref, ...)

which processes speech and only returns losses for Trainer to update the model.

ESPnet-SE++ User Interface

Building a New Recipe from Scratch
Since ESPnet2 provides common scripts such as enh.sh and enh_asr.sh for each task, users
only need to create local/data.sh for the data preparation of a new corpus. The generated
data follows the Kaldi-style structure (Povey et al., 2011):

The detailed instructions for data preparation and building new recipes in espnet2 are described
in the link.

Inference with Pre-trained Models
Pretrained models from ESPnet are provided on HuggingFace and Zenodo. Users can download
and infer with the models.model_name in the following section should be huggingface_id or
one of the tags in the table.csv in espnet_model_zoo . Users can also directly provide a
Zenodo URL or a HuggingFace URL.

Inference API

The inference functions are from the enh_inference and enh_asr_inference in the executable
code bin/
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Calling SeparateSpeech and Speech2Text with unprocessed audios returns the separated
speech and their recognition results.

SSE

Joint-Task

The details for downloading models and inference are described in espnet_model_zoo.

Demonstrations
The demonstrations of ESPnet-SE can be found in the following google colab links:
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• ESPnet SSE Demonstration: CHiME-4 and WSJ0-2mix
• ESPnet-SE++ Joint-Task Demonstration: L3DAS22 Challenge and SLURP-Spatialized

Development plan
The development plan of the ESPnet-SE++ can be found in Development plan for ESPnet2
speech enhancement. In addition, we will explore the combinations with other front-end tasks,
such as using ASR as a front-end model and TTS as a back-end model for speech-to-speech
conversion.

Conclusions
In this paper, we introduce the software structure and the user interface of ESPnet-SE++,
including the SSE task and joint-task models. ESPnet-SE++ provides general recipes for
training models on different corpus and a simple way for adding new recipes. The joint-task
implementation further shows that the modularized design improves the flexibility of ESPnet.
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