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Summary
G2Aero is a Python package for the design and deformation of discrete planar curves and
tubular surfaces using a geometric data-driven approach. G2Aero utilizes a topology of product
manifolds: the Grassmannian, 𝒢(𝑛, 2)—the set of 2-dimensional subspaces in ℝ𝑛—and the
symmetric positive-definite (SPD) manifold, 𝑆2

++—the set of 2×2 SPD matrices. The package
provides a novel framework for representing separable deformations to shapes, which consist of
stretching, scaling, rotating, and translating—also known as affine deformations—and a set of
complementary deformations—which we refer to as undulation-type deformations.

We focus on airfoil and blade design applications to emphasize the utility of the methods in
an environment where the separation of affine and undulation-type deformations is critical.
Notable functionalities of the framework for blade design include:

1) generating novel 2D (airfoil) shapes informed by a database of physically relevant airfoils,
2) building 3D blades by interpolating sequences of 2D airfoil cross-sections, and
3) generating blades with consistent perturbations along the blade span.

We discuss the framework and provide examples in the context of wind energy applications,
specifically wind turbine blade design. Figure 1 shows the wire frame obtained by interpolating
airfoils defining the IEA 15-MW wind turbine blade (Gaertner et al., 2020) and applying affine
transformations corresponding to twist, chordal scaling, and bending. This, and all other figures
in the paper, can be reproduced following examples and referencing supporting documentation
provided in the G2Aero package.

Statement of need
Aerodynamic shape design is a capstone problem in engineering and manufacturing that
continues evolving with modern computational methods and resources. Many design and
manufacturing algorithms rely on shape parameterizations to manipulate shapes to control
and measure manufacturing and/or damage variations, develop surrogates, study sensitivities,
approximate inverse problems, and inform optimizations.

Figure 1: Blade wire-frame obtained by interpolating the colored cross-sections. Adapted from Grey et
al. (2023).
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Two-dimensional cross-sections of aerodynamic structures such as intake passages, exhaust
nozzles, bypass ducts, wings, gas turbine engine blades/vanes, and wind turbine blades are
critical engineering shapes for aerospace and energy industries. Specifically, blade and wing
design involves designing airfoils (2D cross-sections of a blade/wing) to improve aerodynamic,
structural, and acoustic performance. Recent rapid development of artificial intelligence (AI)
and machine learning (ML) algorithms made an airfoil design a growing area of research (Li et
al., 2022) once again. Shape representations that better regularize deformations and reduce
the dimension of the design space can have a significant impact in AI and ML applications
(Chen et al., 2020; Glaws, Hokanson, et al., 2022; Grey & Constantine, 2018).

Comparison with existing methods
There is a wide range of methods to represent airfoil geometry (Masters et al., 2017). These
methods vary from general geometry representation, such as B-splines (Hosseini & Moetakef-
Imani, 2016), to parametric methods specific to airfoil shapes, such as PARSEC (Sobieczky,
1999). The current state-of-the-art method for airfoil shape parametrization is the class-shape
transformation (CST) (Kulfan, 2008). The parameters in this representation are coefficients of
a truncated Bernstein polynomial expansion and tuning them enables designers to define new
airfoil shapes.

As an example, to generate new airfoils, researchers perturb CST coefficients of baseline airfoils
(existing well-studied airfoils) and define design space as a hypercube with some empirical limits
(Chen et al., 2020; Glaws, King, et al., 2022; Lim & Kim, 2019). But it can be challenging to
define a broader, more general design space to generate new types of airfoils, e.g., using several
baseline airfoils results in a very complicated and disjoint CST design space (see Figure 2a).
The shape parametrization used in G2Aero is based on principal geodesic analysis (PGA) over
the Grassmannian; it allows us to define an improved low-dimensional parameter domain for
design and manufacturing algorithms. Details about PGA, as a generalization of Principal
Component Analysis, are described in (Fletcher et al., 2003). A random parameter sweep over
the CST domain may produce non-physical airfoil shapes, while a random parameter sweep
over the PGA domain results in “reasonable” (well-regularized) airfoils (Figure 2b).

Figure 2: CST and PGA design spaces: a) 2D marginals of airfoil data, with colors indicating different
classes of airfoils; b) airfoils obtained from random sweeps across CST and PGA domains.

The CST method (and other explicit basis representations) often couples linear scaling of the
shape (affine deformations) and undulating perturbations. Affine deformations—like changes in
thickness, camber, and orientation—are often constrained in design problems (e.g., changes in
thickness, Reynolds number, or angle-of-attack) and result in relatively well-understood physical
impacts on aerodynamic performance; while undulating perturbations are of increasing interest
to airfoil design (Berguin et al., 2015; Glaws, Hokanson, et al., 2022; Grey & Constantine,
2018). G2Aero decouples linear scaling and undulations by defining undulations as the set
of all deformations modulo linear scaling of discrete curves. Because of this separability, we
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can independently study the effect of undulating perturbations—for example, manufacturing
defects and damage.

Blade surfaces are generally defined by an ordered set of cross-sectional airfoils at different
blade-span positions from hub to tip paired with profiles of twist, chordal scaling, and translation
(bending). It can be challenging to interpolate an input sequence of 2D cross-sections along
span-wise coordinates to define a 3D surface. Current approaches often require significant
hand-tuning of airfoil shapes and interpolation methods to construct valid blade geometries
without “dimples” or “kinks” in the blade’s surface; e.g., families of airfoils defining modern
wind turbine blades are carefully designed to ensure compatibility for blade definitions (Gaertner
et al., 2020; Jonkman et al., 2009). The chordal scaling profile represents linear deformations
and is often tightly regulated by the operational conditions of the blade. Our separable
treatment of linear scaling and undulations enables generalized surface interpolation, which is
independent of these prescribed linear deformations and generates more reliable/robust surface
geometries from diverse sets of airfoils potentially spanning distinct families.

Moreover, the number of parameters required to define an individual blade scales by the total
number of designed cross-sections. For example, a wind turbine blade may be composed of eight
to ten airfoil shapes along its span such that the total parameter count for the blade is an order
of magnitude larger than the number of individual parameters defining an airfoil. Assuming
each airfoil is defined independently, this could amount to hundreds of parameters required to
represent a single blade shape. And the vast majority of these parameter combinations result
in non-physical designs. G2Aero significantly reduces the total number of parameters by using
parallel translation over the PGA domain to consistently perturb interpolated 2D shapes for
3D surface design (Figure 3).

Methods
G2Aero implements the novel separable tensor framework outlined in detail in Grey et al. (2023).
It is designed to learn matrix-submanifolds, generate novel shapes localized to data, control
shape undulations by truncating an ordered basis of deforming modes, and enable a novel
notion of “consistent deformations” as an approach to regularized surface design.

Specific methods within G2Aero include:

• principal geodesic analysis (PGA) over normal coordinate neighborhoods of 𝒢(𝑛, 2) and
𝑆2
++ matrix manifolds,

• Riemannian interpolation connecting a sequence of 2D cross-sections to build 3D swept
surfaces from data,

• parallel translation over inferred PGA domain to perform consistent perturbations over
the span of interpolated 2D shapes for 3D surface design.

Figure 3: Consistent perturbations applied to all baseline airfoils of the IEA 15-MW blade.
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Current capabilities and applications

1) Generating airfoil shapes

G2Aero defines an improved parameter domain inferred from a database of relevant shapes
(discrete 2D curves). This domain independently treats affine and undulating type deformations,
allowing for more targeted shape design and generation of a rich set of novel 2D deformations.
Using PGA over the Grassmannian significantly reduces the dimensionality of the parameter
domain. Using an extensive database of airfoils (Quayle, 2022) and analyzing the shape
reconstruction error, we found that we can use as few as four PGA parameters to represent
a wide range of undulation-type deformations of the shape and two parameters to represent
linear deformations.

In Doronina et al. (2022), we concisely summarized the framework and demonstrated the
advantages of an improved parameter domain for ML/AI algorithms. Zhang et al. (2022)
tested Grassmannian shape representation and demonstrated robustness for shape optimization
applications. Jasa et al. (2022) used airfoils generated by G2Aero coupled with NREL’s
Wind-Plant Integrated System Design Engineering Model (WISDEM) (Dykes et al., 2021) to
design blade shapes with reduced costs of energy compared to traditional design methods.

2) Building 3D blades by interpolating 2D airfoil cross-sections

We use piecewise geodesic interpolation to connect a sequence of 2D cross-sections and build 3D
swept surfaces from data. Our separable treatment of linear scaling and undulating deformations
enables the generation of more reliable/robust swept surface geometries independent of often
fixed operation conditions (twist, chord scaling, and bending of the blade). As part of G2Aero
we provide an example script demonstrating how to generate a 3D computer-aided design
(CAD) surface or surface mesh. We start from a YAML file in the format used to define a
wind turbine blade. The blade shape definition contains ten airfoils at different blade-span
positions and profiles of twist, chordal scaling, and bending. We generate 100 interpolated
cross-sections defining a refined 3D surface. Then, using Gmsh (Geuzaine & Remacle, 2009),
we generate a 3D surface mesh shown on Figure 4.

3) Generating perturbed blades

G2Aero achieves flexibility to generate designs in a customizable way over any portion of the
blade such that deformations are independent of the deformations governing the operational
conditions (twist, chordal scaling, and bending of the blade). The blade perturbation capability
of G2Aero has been successfully used in Glaws, Vijayakumar, et al. (2022).

Figure 4: Structured surface mesh of the IEA 15-MW blade. Adapted from from Grey et al. (2023)
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Outlook and Future Work
Despite our focus on airfoil and blade design, we note obvious extensions to a variety of 2D
shape applications as well as 3D shapes that are well-defined by a sequence of cross-sections,
such as inlets, nozzles, ducts, passages, channels, etc. We encourage users to experiment with
G2Aero and apply methods to alternative types of shapes and surfaces. Our computationally
efficient approach to matrix-manifold learning and generative modeling of discrete planar
curves may offer advantages in applications beyond aerodynamics, where learning a non-linear
topology of shapes from data may be impactful.
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