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Summary
Swiftest is a software package designed to model the long-term dynamics of system of bodies
in orbit around a dominant central body, such a planetary system around a star, or a satellite
system around a planet. The main body of the program is written in Modern Fortran, taking
advantage of the object-oriented capabilities included with Fortran 2003 and the parallel
capabilities included with Fortran 2008 and Fortran 2018. Swiftest also includes a Python
package that allows the user to quickly generate input, run simulations, and process output
from the simulations. Swiftest uses a NetCDF output file format which makes data analysis
with the Swiftest Python package a streamlined and flexible process for the user.

Statement of Need
Building off a strong legacy, including its predecessors Swifter (Kaufmann, n.d.) and Swift

(Levison & Duncan, 1994), Swiftest takes the next step in modeling the dynamics of planetary
systems by improving the performance and ease of use of software, and by introducing a
new collisional fragmentation model. Currently, Swiftest includes the four main symplectic
integrators included in its predecessors:

WHM Wisdom-Holman method. WHM is a symplectic integrator that is best suited for cases in
which the orbiting bodies do not have close encounters with each other. For details see
Wisdom & Holman (1991).

RMVS Regularized Mixed Variable Symplectic. RMVS is an extension of WHM that handles close
approaches between test particles and massive bodies. For details, see Levison & Duncan
(1994).

HELIO Democratic Heliocentric method. This is a basic symplectic integrator that uses
democratic heliocentric coordinates instead of the Jacobi coordinates used by WHM. Like
WHM it is not suited for simulating close encounters between orbiting bodies. For details,
see Duncan et al. (1998).

SyMBA Symplectic Massive Body Algorithm. This is an extension of HELIO that handles
close approaches between massive bodies and any of the other objects in the simulation.
It also includes semi-interacting massive bodies that can gravitationally influence fully
massive bodies but not each other. This algorithm is described in the Duncan et al.
(1998). See also Levison & Duncan (2000).

All of the integrators that are currently implemented are based symplectic integrators, which
are designed to model massive bodies (e.g. planets) or test particles (e.g. asteroids) in orbit of
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a single dominant central body (e.g. the Sun) for very long periods of times (e.g. Gy). The core
components of Swiftest were inherited from the Swift/Swifter codebase, but have been
somewhat modified for performance. The Swift-family of integrators are most comparable to
other symplectic integrators, which are among the most popular numerical methods used to
study the long-term dynamics of planetary systems.

The SyMBA integrator included in Swiftest is most similar to the hybrid symplectic integrator
MERCURY6 (Chambers, 1999), the MERCURIUS integrator of REBOUND (Rein & Liu, 2012; Rein &
Tamayo, 2015), and the GPU-enabled hybrid symplectic integrators such as QYMSYM (Moore &
Quillen, 2011) and GENGA II (Grimm et al., 2022), with some important distinctions. The
hybrid symplectic integrators typically employ a symplectic method, such as the original WHM
method in Jacobi coordinates or the modified method that uses the Democratic Heliocentric
coordinates, only when bodies are far from each other relative to their gravitational spheres of
influence (some multiple of a Hill’s sphere). When bodies approach each other, the integration
is smoothly switched to a non-symplectic method, such as Bulirsch-Stoer or IAS15. In contrast,
SyMBA is a multi-step method that recursively subdivides the step size of bodies undergoing
close approach with each other.

In addition Swiftest contains a number of significant enhancements relative to its predecessors:

• It includes a fully symplectic implementation of the post-Newtonian correction (General
Relativity) as described in Saha & Tremaine (1994).

• Output data is stored in NetCDF4 (HDF5) format, making data analysis, cross-platform
compatibility, and portability far more robust than the flat binary file formats used by its
predecessors.

• It makes use of CPU-based parallelization via OpenMP. It also makes use of SIMD
instructions, but these are available only when compiled for target host machine rather
than when installed from PyPI via pip.

• Simulations can be run by means of a standalone binary driver program, similar to
its predecessors, or from a compiled Python module. Both the standalone driver and
Python module link to the same compiled library, so simulations run by either method
are identical.

• It comes with an extensive set of Python scripts to help generate simulation initial
conditions and post-process simulation results.

• It includes the Fraggle collisional fragmentation model that is used to generate collisional
fragments on trajectories that conserve linear and angular momentum and lose the
appropriate amount of collisional energy for inelastic collisions between massive bodies
in SyMBA simulations. The collisional outcome is determined using standard methods
based on the work of Leinhardt & Stewart (2012) and Stewart & Leinhardt (2012).

Performance
Modeling the behavior of thousands of fully interacting bodies over long timescales is com-
putationally expensive, with typical runs taking weeks or months to complete. The addition
of collisional fragmentation can quickly generate hundreds or thousands of new bodies in a
short time period, creating further computational challenges for traditional n-body integrators.
As a result, enhancing computational performance was a key aspect of the development of
Swiftest. Here we show a comparison between the performance of Swift, Swifter-OMP (a
parallel version of Swifter), and Swiftest on simulations with 1k, 2k, 8k, and 16k fully
interacting bodies. The number of cores dedicated to each run is varied from 1 to 24 to test
the parallel performance of each program.

Figure 1 shows the results of this performance test. We can see that Swiftest outperforms
Swifter-OMP and Swift in each simulation set, even when run in serial. When run in parallel,
Swiftest shows a significant performance boost when the number of bodies is increased. The
improved performance of Swiftest compared to Swifter-OMP and Swift is a critical step
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forward in n-body modeling, providing a powerful tool for modeling the dynamical evolution of
planetary systems.

Figure 1: Performance testing of Swiftest on systems of (a) 1k, (b) 2k, (c) 8k, and (d) 16k fully
interacting massive bodies. All simulations were run using the SyMBA integrator included in Swift,
Swifter-OMP (and earlier attempt to parallelize Swifter), and Swiftest. Speedup is measured relative
to Swiftest for 1 CPU (dashed), with an ideal 1:1 speedup shown as an upper limit (dotted). The
performance of Swifter-OMP is shown in green while the performance of Swiftest is shown in blue. All
simulations were run on the Purdue University Rosen Center for Advanced Computing Brown Community
Cluster. Brown contains 550 Dell compute nodes, with each node containing 2 12-core Intel Xeon Gold
Sky Lake processors, resulting in 24 cores per node. Each node has 96 GB of memory.
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