
libscientific: A Powerful C Library for Multivariate
Analysis
Giuseppe Marco Randazzo 1

1 Independent researcher
DOI: 10.21105/joss.05420

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @mikeaalv
• @faosorios

Submitted: 13 March 2023
Published: 25 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Multivariate analysis is a powerful technique that allows researchers to analyze and interpret
data with multiple variables. In today’s data-driven world, multivariate analysis has become
essential for the exploration of complex data sets. libscientific is a powerful library written in C
that provides a comprehensive set of multivariate analysis tools based on the NIPALS algorithm.
The library includes several multivariate analysis algorithms, such as principal component
analysis (PCA), partial least squares regression (PLS), consensus principal component analysis
(CPCA), multiblock principal component analysis, and multiblock partial least squares (UPLS).
libscientific also includes several other tools to analyze data, such as cluster analysis using
KMeans Hierarchical clustering and other methods to run linear algebra calculations. The
library also provides a Python foreign function to be used inside Python scripts.

Statement of need
The library is designed to be easy to use and can be integrated into any C or C++ project.
Additionally, libscientific comes with a foreign function Python bindings, making it accessible
within Python scripts and easier to perform data analysis tasks. One of the main advantages of
libscientific is its performance and scalability. This means that large data sets can be analyzed
quickly and efficiently, making it an ideal choice for applications where speed is critical. The
library depends only on lapack for SVD and eigenvalues decomposition and can be easily
integrated into embedded systems. The current library version is 1.6.0, and here is a list of the
current library features:

• Principal Component Analysis (PCA)
• Consensus Principal Component Analysis (CPCA)
• Partial Least Squares (PLS)
• Multiple Linear Regression (MLR)
• Unfold Principal Component Analysis (UPCA)
• Unfold Partial Least Squares (UPLS)
• Fisher Linear Discriminant Analysis (LDA)
• Kmeans++ Clustering
• Hierarchical Clustering
• Sample selection algorithms: Most Descriptive Compound (MDC), Most Dissimilar

Compound (MaxDis)
• Statistical measures: R2, MSE, MAE, RMSE, Sensitivity, PPV
• Yates Analysis
• Receiver Operating Characteristic curve anaysis (ROC)
• Precision-Recal curve analysis
• Matrix-matrix Euclidean, Manhattan, Cosine and Mahalanobis distances
• Numerical integration

Randazzo. (2023). libscientific: A Powerful C Library for Multivariate Analysis. Journal of Open Source Software, 8(90), 5420. https:
//doi.org/10.21105/joss.05420.

1

https://orcid.org/0000-0003-1585-0019
https://doi.org/10.21105/joss.05420
https://github.com/openjournals/joss-reviews/issues/5420
https://github.com/gmrandazzo/libscientific
https://doi.org/10.5281/zenodo.8436823
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/mikeaalv
https://github.com/faosorios
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05420
https://doi.org/10.21105/joss.05420


• Natural cubic spline interpolation and prediction
• Linear algebra (Eigenvector/value and SVD operated by Lapack library)
• Ordinary Least Squares solver
• Linear equation Solver
• Nelder-Mead Simplex Optimization
• Cross validation methods: Bootstrap k-fold, Leave-One-Out, Y-Scrambling

libscientific was designed to analyze any kind of multivariate tabular data and to be applied in
any scientific field.

State of The field
The primary objective of libscientific is to offer a library capable of performing multivariate
analysis by implementing the NIPALS algorithm. This choice stems from the limitations of
prevailing popular libraries like scikit-learn, which need help handling missing and noisy data
effectively (Ke & Kanade, 2005; Little & Rubin, 1987). Notably, the NIPALS algorithm is a
robust solution to these challenges, addressing issues related to data incompleteness without
necessitating prior data imputation. Furthermore, the NIPALS algorithm conducts iterative
computations of components and latent variables, leading to more efficient use of memory
resources than alternative methods found in scikit-learn. Notably, it demonstrates superior
computational efficiency, especially when researchers seek to analyze only a select few of the
foremost principal components or latent variables. In summary, libscientific aims to provide a
sophisticated solution for multivariate analysis, leveraging the NIPALS algorithm’s strengths
to surmount issues related to missing and noisy data, optimize component calculations, and
enhance computational efficiency in scenarios where the analysis focuses on a limited number
of critical principal components or latent variables.

Multivariate analysis algorithms specs
Principal component analysis (PCA) is one of the most commonly used methods for multi-
variate analysis. PCA is an unsupervised method that compresses data into low-dimensional
representations that capture the dominant variation in the data. libscientific provides a robust
implementation of PCA using the NIPALS algorithm described in Geladi & Kowalski (1986).
libscientific implementation can handle data sets with many variables, few instances, and
missing values.

Partial least squares (PLS) is another commonly used method for multivariate analysis. PLS
is a supervised method that captures the dominant covariation between the data matrix and
the target/response. libscientific provides one version of PLS described by Geladi & Kowalski
(1986). This implementation works with single-task and multi-task regression problems.

In addition to PCA and PLS, libscientific provides implementations of Consensus PCA (CPCA)
to analyze time series and multi-block data, algorithm described by Westerhuis et al. (1998),
and other multi-block methods such as Unfold Principal Component Analysis (UPCA) and
Unfold Partial Least Squares (UPLS) both implementation from Wold et al. (1987).

All multivariate algorithms admit missing values since the core linear algebra functions are
coded to skip missing values, according to Martens & Martens (2001), p. 381.

Other algorithms
The library also provides compound selection algorithms such as Most Descriptive Compounds
(Hudson et al., 1996) or Most Dissimilar Compound (Holliday & Willett, 1996) selections,
allowing one to analyze scores plots or original data matrices and select samples based on
the object/sample diversity. Moreover, multi-thread cross-validation methodologies such as

Randazzo. (2023). libscientific: A Powerful C Library for Multivariate Analysis. Journal of Open Source Software, 8(90), 5420. https:
//doi.org/10.21105/joss.05420.

2

https://doi.org/10.21105/joss.05420
https://doi.org/10.21105/joss.05420


“Bootstrap k-fold” Leave-One-Out (LOO), and Y-Scrambling tests are implemented to facilitate
the scientist in testing model prediction abilities.

Algorithm stability
Since we are dealing with numerical analysis, unit tests are crucial to ensure correctness,
stability, and reproducibility. libscientific tests range from simple matrix-vector multiplication
to the correctness of complex algorithms using ad-hoc torture toy examples. The code coverage
is reported to be more than 75%, indicating that a larger portion of the code has been verified
to work as expected, reducing the likelihood of undiscovered bugs. This is important since
libscientific is a set of implementations of algorithms that involves complex mathematical
calculation, and correctness and accuracy are crucial in minimizing the risk of numerical errors
in scientific, engineering, and data analysis applications.

Speed and Memory Comparison
Several simulations of every algorithm in libscientific with data of different sizes (input size)
against CPU speed were performed to address the algorithm’s performance.

Looking at the plots for PCA, CPCA, and PLS in Figure 1, we observe a linear trend, which
suggests that the algorithm’s time complexity also increases linearly. However, this does not
tell the computational complexity of the algorithms. Indeed, since the NIPALS algorithm is
similar to the power method for determining the eigenvectors and eigenvalues of a matrix
(Lorber et al., 1987), we can assume that the computational complexity could be O(n²) or
O(n³). Moreover it is important to point out that the calculation speed is mainly influenced by
the number of samples, the number of iterations required for convergence, and the number of
principal components/latent variables to calculate.

Instead, MLR shows a polynomial correlation as expected from the OLS algorithm, which uses
a matrix direct inverse approach with a computational complexity of O(n³).

With this analysis, we confirm that as the input size (often termed “problem size”) increases by
a constant factor, the execution time also increases proportionally (linear algorithms). Linear
algorithms have notable characteristics:

• Most of the time, ‘Linear Time Complexity (O(n))’: Execution time grows linearly with
input size.

• Constant Work per Input Element: Each input element is processed continuously in
linear algorithms.

• Stable Performance Impact: Doubling input size roughly doubles execution time, facili-
tating performance estimation.

• Optimal Scaling: Linear-time solutions efficiently handle larger inputs.

PCA CPCA

Randazzo. (2023). libscientific: A Powerful C Library for Multivariate Analysis. Journal of Open Source Software, 8(90), 5420. https:
//doi.org/10.21105/joss.05420.

3

https://doi.org/10.21105/joss.05420
https://doi.org/10.21105/joss.05420


PLS MLR

Figure 1: Speed performances of 4 different algorithms: Principal Component Analysis (PCA),
Partial Least-Squares (PLS), Consensus Principal Component Analysis (CPCA), and Multiple
Linear Regression (MLR). Simulations reveal linear trends for PCA, CPCA, and PLS, hinting at
probable linear time complexity. However, it is worth mentioning that the NIPALS algorithm,
influenced by sample size, iterations, latent variables, and similar to the power method for
estimating eigenvectors/eigenvalues, may report O(n²) or O(n³) complexity. Meanwhile, MLR
exhibits a polynomial correlation typical of the OLS matrix approach with O(n³) complexity.

Usage
For the usage in C or either Python we invite reading the official documentation located at the
following link: http://gmrandazzo.github.io/libscientific/

Conclusions
libscientific offers a potent suite of multivariate analysis tools that greatly enhance the ability of
researchers and analysts to extract valuable insights from diverse tabular data. With its robust C-
based implementation and seamless Python bindings, the library balances high performance and
user-friendliness, making it an optimal solution for swiftly executing data-driven applications.

Incorporating libscientific into analytical workflows may empower professionals to leverage
various multivariate techniques to crack complex relationships and patterns within datasets.
By offering tools for data reduction, predictive modeling, quality control, and more, as already
demonstrated in previous works in -omics science and predictive modeling (Kwon et al., 2021,
2022; Randazzo et al., 2016, 2020; Randazzo, Vigneau, et al., 2017; Randazzo, Tonoli, et al.,
2017), the library can be an indispensable asset for tackling intricate challenges across various
disciplines.

Acknowledgements
libscientific was born as an open-source project from the Ph.D. thesis of the author Giuseppe
Marco Randazzo. The author acknowledges the support from the University of Perugia, the
valuable code review made by the people from Freaknet Medialab, and the bug reports from
the whole open-source community using this library.

References
Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica

Chimica Acta, 185, 1–17. https://doi.org/10.1016/0003-2670(86)80028-9

Randazzo. (2023). libscientific: A Powerful C Library for Multivariate Analysis. Journal of Open Source Software, 8(90), 5420. https:
//doi.org/10.21105/joss.05420.

4

http://gmrandazzo.github.io/libscientific/
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.21105/joss.05420
https://doi.org/10.21105/joss.05420


Holliday, J. D., & Willett, P. (1996). Definitions of ”dissimilarity” for dissimilarity-based
compound selection. SLAS Discovery, 1(3), 145–151. https://doi.org/10.1177/
108705719600100308

Hudson, B. D., Hyde, R. M., Rahr, E., Wood, J., & Osman, J. (1996). Parameter based
methods for compound selection from chemical databases. Quantitative Structure-Activity
Relationships, 15(4), 285–289. https://doi.org/10.1002/qsar.19960150402

Ke, Q., & Kanade, T. (2005). Robust L1 norm factorization in the presence of outliers and
missing data by alternative convex programming. 1, 739–746 vol. 1. https://doi.org/10.
1109/CVPR.2005.309

Kwon, H.-K., Dussik, C. M., Kim, S.-H., Kyriakides, T. R., Oh, I., & Lee, F. Y. (2022).
Treating “septic” with enhanced antibiotics and “arthritis” by mitigation of excessive
inflammation. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.
3389/fcimb.2022.897291

Kwon, H.-K., Lee, I., Yu, K. E., Cahill, S. V., Alder, K. D., Lee, S., Dussik, C. M., Back, J.,
Choi, J., Song, L., Kyriakides, T. R., & Lee, F. Y. (2021). Dual therapeutic targeting of
intra-articular inflammation and intracellular bacteria enhances chondroprotection in septic
arthritis. Science Advances, 7 (26), eabf2665. https://doi.org/10.1126/sciadv.abf2665

Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. Wiley.
https://doi.org/10.1002/9781119013563

Lorber, A., Wangen, L. E., & Kowalski, B. R. (1987). A theoretical foundation for the
PLS algorithm. Journal of Chemometrics, 1(1), 19–31. https://doi.org/10.1002/cem.
1180010105

Martens, H., & Martens, M. (2001). Multivariate analysis of quality : An introduction. Wiley.
https://doi.org/10.1088/0957-0233/12/10/708

Randazzo, G. M., Bileck, A., Danani, A., Vogt, B., & Groessl, M. (2020). Steroid identification
via deep learning retention time predictions and two-dimensional gas chromatography-
high resolution mass spectrometry. Journal of Chromatography A, 1612, 460661. https:
//doi.org/10.1016/j.chroma.2019.460661

Randazzo, G. M., Tonoli, D., Hambye, S., Guillarme, D., Jeanneret, F., Nurisso, A., Goracci,
L., Boccard, J., & Rudaz, S. (2016). Prediction of retention time in reversed-phase liquid
chromatography as a tool for steroid identification. Analytica Chimica Acta, 916, 8–16.
https://doi.org/10.1016/j.aca.2016.02.014

Randazzo, G. M., Tonoli, D., Strajhar, P., Xenarios, I., Odermatt, A., Boccard, J., &
Rudaz, S. (2017). Enhanced metabolite annotation via dynamic retention time prediction:
Steroidogenesis alterations as a case study. Journal of Chromatography B, 1071, 11–18.
https://doi.org/10.1016/j.jchromb.2017.04.032

Randazzo, G. M., Vigneau, E., Courcoux, P., Harrouet, C., Lijour, Y., Dardenne, P., Boccard,
J., & Rudaz, S. (2017). Indirect quantitative structure-retention relationship for steroid
identification: A chemometric challenge at “chimiométrie 2016.” Chemometrics and
Intelligent Laboratory Systems, 160, 52–58. https://doi.org/10.1016/j.chemolab.2016.11.
010

Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1998). Analysis of multiblock and hierarchical
PCA and PLS models. Journal of Chemometrics, 12(5), 301–321. https://doi.org/10.
1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S

Wold, S., Geladi, P., Esbensen, K., & Öhman, J. (1987). Multi-way principal components-
and PLS-analysis. Journal of Chemometrics, 1(1), 41–56. https://doi.org/10.1002/cem.
1180010107

Randazzo. (2023). libscientific: A Powerful C Library for Multivariate Analysis. Journal of Open Source Software, 8(90), 5420. https:
//doi.org/10.21105/joss.05420.

5

https://doi.org/10.1177/108705719600100308
https://doi.org/10.1177/108705719600100308
https://doi.org/10.1002/qsar.19960150402
https://doi.org/10.1109/CVPR.2005.309
https://doi.org/10.1109/CVPR.2005.309
https://doi.org/10.3389/fcimb.2022.897291
https://doi.org/10.3389/fcimb.2022.897291
https://doi.org/10.1126/sciadv.abf2665
https://doi.org/10.1002/9781119013563
https://doi.org/10.1002/cem.1180010105
https://doi.org/10.1002/cem.1180010105
https://doi.org/10.1088/0957-0233/12/10/708
https://doi.org/10.1016/j.chroma.2019.460661
https://doi.org/10.1016/j.chroma.2019.460661
https://doi.org/10.1016/j.aca.2016.02.014
https://doi.org/10.1016/j.jchromb.2017.04.032
https://doi.org/10.1016/j.chemolab.2016.11.010
https://doi.org/10.1016/j.chemolab.2016.11.010
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1002/cem.1180010107
https://doi.org/10.1002/cem.1180010107
https://doi.org/10.21105/joss.05420
https://doi.org/10.21105/joss.05420

	Summary
	Statement of need
	State of The field
	Multivariate analysis algorithms specs
	Other algorithms
	Algorithm stability
	Speed and Memory Comparison
	Usage
	Conclusions
	Acknowledgements
	References

