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Summary
Highly oscillatory ordinary differential equations (ODEs) pose a computational challenge for
standard solvers available in scientific computing libraries. These conventional methods are
typically based on a polynomial approximation, resulting in there being several timesteps
per oscillation period, which leads to runtimes scaling as 𝒪(𝜔), with 𝜔 being the oscillation
frequency. This can become prohibitively slow.

The riccati (Python) package implements the efficient numerical method described in Agocs
& Barnett (2022) (dubbed ARDC for adaptive Riccati defect correction) for solving ODEs of
the form

𝑢″(𝑡) + 2𝛾(𝑡)𝑢′(𝑡) + 𝜔2(𝑡)𝑢(𝑡) = 0, 𝑡 ∈ [𝑡0, 𝑡1], (1)

subject to the initial conditions 𝑢(𝑡0) = 𝑢0, 𝑢′(𝑡0) = 𝑢′
0. The frequency 𝜔(𝑡) and friction

𝛾(𝑡) terms are given smooth real-valued functions (passed in as callables). The solution 𝑢(𝑡)
may vary between highly oscillatory and slowly-changing over the integration range, in which
case riccati will switch between using nonoscillatory (spectral Chebyshev) and a specialised
oscillatory solver (Riccati defect correction) to achieve an 𝒪(1) (frequency-independent)
runtime. It automatically adapts its stepsize to attempt to reach a user-requested relative
error tolerance. The solver is capable of producing dense output, i.e., it can return a numerical
solution estimate at a user-selected set of 𝑡-values, at the cost of a few arithmetic operations
per 𝑡-point.

Statement of need
Specialised numerical methods exist to solve Equation 1 in the high-frequency (𝜔 ≫ 1) regime,
but of those that have software implementations, none are both (1) able to deal with both
oscillatory and nonoscillatory behaviors occuring in the solution; and (2) high-order accurate,
so that the user may request many digits of accuracy without loss of efficiency. riccati fills
this gap as a spectral adaptive solver. By spectral, we mean that an arbitrarily high order 𝑝
may be chosen (e.g. 𝑝 = 16), allowing a high convergence rate that is limited only by the
smoothness of the coefficients, and (in the nonoscillatory case) that of the solution.

Being a spectral solver means that its convergence rate is as quick as the smoothness of
the coefficients 𝜔(𝑡), 𝛾(𝑡) (in the oscillatory regime), and that of the solution 𝑢(𝑡) (in the
nonoscillatory regime) allows. oscode (Agocs, 2020; Agocs et al., 2020) and the WKB-
marching method1 (Arnold et al., 2011; Körner et al., 2022) are examples of low-order adaptive
oscillatory solvers, efficient when no more than about 6 digits of accuracy are required or
𝜔(𝑡) is near-constant. A high-order alternative is the Kummer’s phase function-based method
(Bremer, 2018, 2022), whose current implementation supports solving Equation 1 in the highly

1Available from https://github.com/JannisKoerner/adaptive-WKB-marching-method.
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oscillatory regime when 𝛾 ≡ 0. Other existing numerical methods have been reviewed, e.g., in
Petzold et al. (1997). Figure 1 compares the performance of the above specialised solvers and
one of SciPy’s (Virtanen et al., 2020) built-in methods (Dormand & Prince, 1980) by plotting
their runtime against the frequency parameter 𝜆 while solving

𝑢″ + 𝜔2(𝑡)𝑢 = 0, where 𝜔2(𝑡) = 𝜆2(1 − 𝑡2 cos 3𝑡), (2)

on the interval 𝑡 ∈ [−1, 1], subject to the initial conditions 𝑢(−1) = 0, 𝑢′(−1) = 𝜆.
The runtimes were measured at two settings of the required relative tolerance 𝜀, 10−6 and
10−12. The figure demonstrates the advantage riccati’s adaptivity provides at low tolerances.
riccati avoids the runtime increase oscode and the WKB marching method exhibit at
low-to-intermediate frequencies, and its runtime is virtually independent of the oscillation
frequency.
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Figure 1: Left: Numerical solution of Equation 2 with 𝜆 = 102. Right: performance comparison of
riccati (labelled ARDC) against state-of-the-art oscillatory solvers. oscode, the WKB marching method,
Kummer’s phase function method, and a high-order Runge–Kutta method (RK78) (Dormand & Prince,
1980) on Equation 2 with a varying frequency parameter 𝜆. Solid and dashed lines denote runs with a
relative tolerance settings of 𝜀 = 10−12 and 10−6, respectively.
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