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Summary
The dynamics of cavitation bubbles and the acoustic emissions they produce are important in
a broad range of engineering applications and natural phenomena, either because the strong
energy focusing of the bubble collapse is to be avoided, as it may cause damage to surfaces, or
to be exploited, such as in emerging medical applications. APECSS (Acoustic Pulse Emitted by
Cavitation in Spherical Symmetry) is a software library to simulate the dynamic behavior and
acoustic emissions of cavitation bubbles using an efficient state-of-the-art numerical framework.
APECSS supports different Rayleigh-Plesset models for bubble dynamics in incompressible
and compressible media with Newtonian or viscoelastic rheology, considering clean or coated
bubbles. Acoustic emissions may be modeled under different modeling assumptions using
a tailored Lagrangian wave tracking method, including the formation and attenuation of
shock waves. APECSS can be extended easily to include custom functionality and may be
incorporated into other software frameworks.

Statement of need
The pressure-driven dynamics of bubbles, a process commonly referred to as cavitation, and
the acoustic emissions these bubbles produce play a central role in a large variety of engineering
applications and natural phenomena (Lauterborn & Kurz, 2010; Plesset & Prosperetti, 1977).
Cavitation drives material erosion of propellers and hydro turbines (Blake & Gibson, 1987;
Reuter et al., 2022), can be used to improve the fatigue strength of materials by peening (Gu
et al., 2021; Soyama & Korsunsky, 2022) or to clean surfaces and membranes (Reuter et al.,
2017), and is utilized as a building block of smart materials (Athanassiadis et al., 2022) as well
as in emerging diagnostic and therapeutic medical applications (Kooiman et al., 2020; Wan et
al., 2015). The extreme conditions produced during a violent bubble collapse, with pressures
of 𝒪(1010)Pa and gas temperatures in excess of 104 K, in reproducible benchtop experiments
promotes cavitation as a microlaboratory for the study of high-pressure and high-temperature
fluid dynamics (Brenner et al., 2002; Liang et al., 2022), and attracts interest as a microfluidic
facility for sonochemistry (Meroni et al., 2022; Tandiono et al., 2011) and material synthesis
(Barcikowski et al., 2019). Cavitation is also key to understanding many natural phenomena,
such as the hunting behavior of pistol shrimps, which generate collapsing cavitation bubbles to
stun their prey (Koukouvinis et al., 2017), or the proliferation of ferns, where cavitation bubbles
catapult the spores into the air (Llorens et al., 2016). Furthermore, the dynamic behavior of
bubbles subject to pressure changes is highly nonlinear and exhibits routes to chaos (Behnia
et al., 2009). The acoustic emissions produced by such oscillating or collapsing bubbles are
similarly complex (Denner & Schenke, 2023; Liang et al., 2022), being highly nonlinear and
admitting the formation of shock fronts. These emissions are, for instance, used in medical
applications to enhance the contrast of ultrasound imaging of the vasculature (Tang et al.,
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2011) or to monitor and control high-intensity focused ultrasound cancer treatments (O’Reilly
& Hynynen, 2012), and are studied in the context of material damage from cavitation bubbles
(Gonzalez-Avila et al., 2021), geological exploration using seismic airguns (MacGillivray, 2019)
and the controlled perforation or lysis of biological cells (Helfield et al., 2016; Tandiono et
al., 2012). Although by no means exhaustive, this versatile list of applications illustrates the
importance of a comprehensive understanding of cavitation bubble dynamics and its acoustic
emissions.

APECSS fills a gap in the open-source software domain by combining established models
for bubble dynamics with a state-of-the-art numerical framework for the acoustic emissions
that supports different modeling assumptions in a portable software library and with minimal
computational overhead. APECSS is written in C and, aside from the standard math library,
has no external dependencies. Compared to the Python and Matlab implementations we
used previously for research and teaching, we observe a speed-up of more than 100× with
APECSS for representative examples, enabling, for instance, large-scale parameter studies. The
flexible and modular design of APECSS allows to easily extend and change its functionality,
and integrate it into other software frameworks. Because of its straightforward installation and
ease of use, APECSS is also attractive for undergraduate and postgraduate education, as a
virtual laboratory for nonlinear mechanics, chaos and acoustics.

Features
At the heart of APECSS lies a numerical solver for the pressure-driven radial dynamics of a
bubble described by a Rayleigh-Plesset-type equation, such as the standard Rayleigh-Plesset
equation for bubbles in incompressible media (Plesset, 1949; Rayleigh, 1917), the Keller-Miksis
equation for bubbles in weakly-compressible media (Keller & Miksis, 1980), or the Gilmore
equation for bubbles in compressible media (Denner, 2021; Gilmore, 1952). In addition, models
for viscoelastic media, e.g. Oldroyd-B (Jiménez-Fernández & Crespo, 2005), Kelvin-Voigt (Yang
& Church, 2005) and Zener (Hua & Johnsen, 2013) models, and for lipid monolayer coatings
of the bubble (Gümmer et al., 2021; Marmottant et al., 2005) are available in APECSS. The
radial bubble dynamics are solved using a custom implementation of the embedded Runge-
Kutta RK5(4) scheme of Dormand & Prince (1980). The numerical framework underpinning
APECSS is agnostic to the applied equations of state (EoS) for the gas and, if applicable,
the compressible liquid (Denner & Schenke, 2023), whereby the ideal-gas EoS (gas), with or
without van-der-Waals hard-core radius, the Tait EoS (liquid) (Cole, 1948; Gilmore, 1952), the
Noble-Abel EoS (gas) (Denner, 2021; Toro, 1999), and the Noble-Abel-stiffened-gas EoS (gas
and liquid) (Denner, 2021; Le Métayer & Saurel, 2016) are readily supported.

The acoustic emissions of an oscillating or collapsing bubble can be simulated assuming the
surrounding medium is incompressible, with 𝑐 → ∞, or compressible, with 𝑐 = constant or
𝑐 = 𝑓(𝑝), where 𝑐 is the speed of sound and 𝑝 is the pressure of the medium surrounding
the bubble. For cases in which acoustic waves are emitted into a compressible medium
with finite speed of sound, the information associated with the emissions is tracked in the
radial direction by a Lagrangian wave tracking method (Denner & Schenke, 2023), which
we developed specifically for the acoustic emissions of cavitation bubbles and which is, at
present, a unique feature of APECSS. Explicit expressions for the radial position, local velocity
and pressure are available for small and moderate Mach numbers, assuming constant fluid
properties (quasi-acoustic assumption) (Gilmore, 1952; Trilling, 1952) or pressure-dependent
fluid properties (Denner & Schenke, 2023). For large Mach numbers, including trans- and
supersonic flows, ordinary differential equations are solved for the radial coordinate and the
local velocity, whereby the velocity is determined by either integrating its spatial (Gilmore,
1952) or temporal (Hickling & Plesset, 1963) derivative along the outgoing characteristic, with
the enthalpy and pressure readily obtained by explicit expressions (Denner & Schenke, 2023).
The formation and attenuation of shock fronts, should they occur, is accounted for by treating
multivalued solutions at runtime.
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Figure 1: Results of an argon bubble with initial radius 𝑅0 = 5𝜇m in water, driven by ultrasound with
a frequency of 23.5 kHz and a pressure amplitude of 145 kPa, as previously considered by (Holzfuss,
2010) in the context of sonoluminescence. (a)-(c) The bubble radius 𝑅(𝑡), bubble-wall Mach number
𝑀(𝑡) = �̇�(𝑡)/𝑐L(𝑡), where 𝑐L(𝑡) is the speed of sound of the liquid at the bubble wall, and gas pressure
𝑝G(𝑡) as a function of time 𝑡. (d)-(e) The pressure amplitude Δ𝑝(𝑟, 𝑡) and velocity 𝑢(𝑟, 𝑡) of the acoustic
wave generated by the primary collapse of the bubble as a function of the radial coordinate 𝑟. (f) The
pressure amplitude Δ𝑝(𝑟, 𝑡) emitted by the bubble at a fixed radial distance 𝑟 = 100𝜇m from the
bubble center as a function of time 𝑡. (g)-(h) Spatial profiles of the pressure amplitude Δ𝑝(𝑟, 𝑡) and
the velocity 𝑢(𝑟, 𝑡) at selected time instances, where 𝑡0 is the time at which the bubble assumes its
minimum radius. The radial bubble dynamics are simulated using the Gilmore-NASG model (Denner,
2021) and the acoustic emissions are simulated using the in-built Lagrangian wave tracking method
(Denner & Schenke, 2023), integrating ordinary differential equations for 𝑟(𝑡) and 𝑢(𝑟, 𝑡) along the
outgoing characteristic and treating the multivalued solutions associated with the formed shock front at
runtime. Argon is modeled by the ideal-gas EoS with a polytropic exponent of 1.666 and a van-der-Waals
hard-core radius of 𝑅0/8.86 (Holzfuss, 2010), and water is modeled using the Noble-Abel-stiffened-gas
EoS with a polytropic exponent of 1.11, a Tait pressure constant of 6.48 × 108 Pa, a co-volume of
6.8 × 10−4 m3/kg and a reference density of 997 kg/m3 (Denner & Schenke, 2023). The ambient and
reference pressure is 105 Pa.

APECSS provides a compact and efficient simulation tool for the prediction of bubble dynamics
and its acoustic emissions for research, as demonstrated by the studies that have driven and
accompanied the development of APECSS (Denner, 2021; Denner & Schenke, 2023; Gümmer
et al., 2021), and higher education. A variety of results of the bubble dynamics and the
acoustic emissions can be readily written into text files at the end of a simulation or at
predefined intervals, as illustrated by the examples shown in Figure 1. The APECSS repository
includes representative examples that introduce the capabilities of the software library and serve
to test the correct functionality of APECSS. The examples also demonstrate how APECSS
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may be extended with additional functionality or be used to build models for more complex
scenarios, such as incorporating an energy model for the gas temperature or modeling the
acoustic interaction of multiple bubbles. Designed as a software library, the capabilities of
APECSS can be adopted in other software frameworks, and its modular design enables a
straightforward extension with custom functionality. A software tool for the simulation of
bubble dynamics, cavitation processes and the associated acoustic emissions with features and
attributes comparable to APECSS is currently not available open source.
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