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Summary
A microbial network is a mathematical representation of a microbial community where nodes
represent microbes and edges represent interactions. It is well-recognized that microbes are
among the main drivers of biological phenotypes in soil, plants, and animals alike, and thus,
their study has vast implications for soil, plant and human health. In particular, recognizing
the microbial, environmental, and agricultural factors that drive plant and soil phenotypes is
crucial to comprehend processes connected to plant and soil health, to identify global practices
of sustainable agriculture, as well as to predict plant and soil responses to environmental
perturbations such as climate change.

The adaptability of microbes to thrive in every environment poses challenges for scientists
who try to understand their communities. Indeed, two microbial communities with the exact
same players can interact differently depending on the environmental conditions. It is thus
desirable to identify commonalities and differences on two microbial networks, hence the need
for computational tools that can match (or align) them.

Statement of need
Our Microbiome Network Alignment Algorithm (MiNAA) aligns two microbial networks using
a combination of the GRAph ALigner (GRAAL) algorithm (Kuchaiev et al., 2010) and the
Hungarian algorithm (Kuhn, 1955; Pilgrim, 1995). Network alignment algorithms find pairs of
nodes (one node from the first network and the other node from the second network) that have
the highest similarity. Traditionally, similarity has been defined as topological similarity such
that the neighborhoods around the two nodes are similar. Recent implementations of network
alignment methods such as NETAL (Neyshabur et al., 2013) and L-GRAAL (Malod-Dognin &
Pržulj, 2015) also include measures of biological similarity, yet these methods are restricted
to one specific type of biological similarity (e.g. sequence similarity in L-GRAAL). Our work
extends existing network alignment implementations by allowing any type of biological similarity
to be input by the user. This flexibility allows the user to choose whatever measure of biological
similarity is suitable for the study at hand. In addition, unlike most existing network alignment
methods that are tailored for protein or gene interaction networks (Chen et al., 2020; Ma &
Liao, 2020), our work is the first one suited for microbiome networks.

Description of the algorithm
Input. Two networks, represented by adjacency matrices, are the main inputs for our algorithm.
Let 𝐺 and 𝐻 be such input networks such that |𝐺| ≤ |𝐻|, where |𝐺| indicates the size of 𝐺.
Optionally, the user may add biological similarity (as a |𝐺|×|𝐻| matrix) to be weighed into the
alignment. This matrix could include gene similarity, phylogenetic similarity, functional similarity,

Nelson et al. (2024). MiNAA: Microbiome Network Alignment Algorithm. Journal of Open Source Software, 9(96), 5448. https://doi.org/10.
21105/joss.05448.

1

https://doi.org/10.21105/joss.05448
https://github.com/openjournals/joss-reviews/issues/5448
https://github.com/solislemuslab/minaa
https://doi.org/10.5281/zenodo.10625654
https://www.gracielle.science/
https://orcid.org/0000-0003-2791-8383
https://github.com/Becheler
https://github.com/salix-d
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05448
https://doi.org/10.21105/joss.05448


among others. Our algorithm also includes additional options that allow the user to specify
how much weight should be placed on biological versus topological information. Specifics on
all the input arguments can be found on GitHub https://github.com/solislemuslab/minaa.

Algorithms. For each input network ( 𝐺,𝐻 ), we calculate the graphlet degree vector, also
denoted the node signature of each node. This topological descriptor characterizes a node
based on its local neighborhood within a 5-node radius (Pržulj, 2007).

Currently, we use the same algorithm for calculating node signatures as in GraphCrunch2
(Kuchaiev et al., 2011) which is a 𝑂(𝑒𝑑3) algorithm where 𝑒 is the number of edges, and
𝑑 is the maximal node degree. Future work will see this implementation replaced by ORCA
(Hočevar & Demšar, 2016), a functional equivalent with runtime 𝑂(𝑒𝑑2) for sparse graphs
such as microbial networks.

Using the node signatures, we calculate the topological difference between each node 𝑔 ∈ 𝐺
and ℎ ∈ 𝐻, according to the formula described in (Milenković & Pržulj, 2008). In keeping
with the flexibility of the original formula, we include a parameter 𝛼, such that the topological
distance 𝑇𝑖,𝑗 = 𝛼 ⋅𝑆𝑖,𝑗 +(1−𝛼) ⋅𝑁𝑖,𝑗, where 𝑆𝑖,𝑗 represents the difference in node signatures
between nodes 𝑖 and 𝑗, and 𝑁𝑖,𝑗 represents the difference in degree between the nodes 𝑖 and 𝑗.
It is recommended to use the default 𝛼 = 1. We store the resulting values in the topological
cost matrix 𝑇 whose computation has complexity 𝑂(|𝐺||𝐻|).

At this time, if the user provided a biological cost matrix 𝐵, the two matrices are combined
into an overall cost matrix 𝑂, such that 𝑂𝑖,𝑗 = 𝛽 ⋅ 𝑇𝑖,𝑗 + (1 − 𝛽) ⋅ 𝐵𝑖,𝑗. The user can specify
the value of the parameter 𝛽, and by default, we use 𝛽 = 1 which represents the case in which
only topological information is considered.

The overall cost matrix, 𝑂, is the input to the Hungarian algorithm (Kuhn, 1955; Pilgrim,
1995), an 𝑂(|𝐺|3) solution to the assignment problem. It is important to note that the
Hungarian algorithm will align every node 𝐺 to some node in 𝐻. Optimally, we should only
align nodes which we have sufficient confidence ought to be aligned, but this partial assignment
problem is computationally harder (likely, NP hard), and beyond the scope of this work. We
show a graphical abstract of our algorithm in Figure 1.
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Figure 1: Graphical abstract of MiNAA. The algorithm takes two networks as input (𝐺,𝐻), and for
each node in the networks, it computes a node signature vector based on the topological information
of the node’s neighborhood. With the node signatures, a topological cost matrix is computed which is
then combined with a biological cost matrix input by the user. This method then applies the Hungarian
algorithm to the overall cost matrix, resulting in a globally optimal alignment. Note that we show
similarity matrices rather than cost matrices in this figure. While the algorithm works with cost matrices,
similarity matrices are more intuitive for the graphical representation, and it is easy to convert one for
the other with a transformation.

Output. The algorithm’s main output is the complete alignment of 𝐺 and 𝐻. That is, we
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return a list of pairs of nodes, one node from network 𝐺 and one node from network 𝐻 that
have been identified by the algorithm as having the lowest alignment cost. We also return an
alignment score matrix with dimensions |𝐺| × |𝐻| with the alignment score of each pair of
nodes (the highest value, the more evidence for alignment). Along the way, 𝐺 and 𝐻’s node
signature sets are saved as files, as are the intermediate matrices 𝑇, 𝐵, and 𝑂.

Simulations
We simulate networks with the R package SPIEC-EASI (SParse InversE Covariance Estimation
for Ecological Association Inference) (Kurtz et al., 2015). We focus on the “Cluster” network
topology since cluster networks are conducive to speculative ecological scenarios. Indeed, for
microbial communities that inhabit many discontinuous niches (clusters) and have minimal
interactions between niches, cluster networks may serve as archetypal models (Peschel et al.,
2021; Yang et al., 2019).

A network is simulated with certain number of nodes, and then a proportion of its edges are
flipped to produce a second network. Because the second network is just a perturbation of the
first network, we expect our alignment method to align the same nodes correctly. For example,
for the original simulated network (Network 𝐺) with 10 nodes and with 5% edge change rate,
five out of every 100 edges in the adjacency matrix that are 1 are replaced by 0, and similarly,
five out of every 100 edges that are 0 are replaced with 1. The modified network from Network
𝐺 is named Network 𝐻. Then our algorithm is applied on the original and modified networks
to detect the alignment pairs. This results in a alignment matrix with its elements represented
as 𝑎𝑖𝑗. Each 𝑎𝑖𝑗 shows the similarity value of the 𝑖’s node in Network 𝐺 with 𝑗’s node in
Network 𝐻. We expect the alignment matrix to be close to the identity matrix.

We iterate over different numbers of nodes (10, 30, 50, 100, 250 and 500), and different
proportions of edges changed (0.05 (5%), 0.1, and 0.9). To achieve reliable results, each
scenario is repeated 30 times and the average of the alignment matrices is computed. We
expect Network 𝐺 to be properly aligned with a perturbation of itself with edge change rate of
0.05 or 0.1, but not with an edge change rate of 0.9.

Figure 2 displays the results of the averaged similarity matrices for all simulated networks, with
rows representing the edge change rate and columns representing the number of nodes. For
instance, for 10 nodes with 0.05 edge changes, the heatmap displays the mean of 30 alignment
matrices. Given that we observe diagonal matrices for a small rate of edge change (0.05 and
0.1), we can conclude that our algorithm correctly aligns nodes under small perturbations of
the networks. However, the results for the same networks with the edge change rate of 0.9 is
far from diagonal which is also what we expected.
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Figure 2: Averaged alignment matrices for all simulated networks, rows representing the rate of altered
edge change and columns representing the number of nodes. Each sub-matrix is a heat map, where a
coordinate’s color represents the rate at which those nodes were aligned. As expected, for 0.05 or 0.1
edge change rate, the alignment matrices are close to identity matrices, illustrating our method’s ability
to align the same nodes on perturbed networks.

We also present results on running time (see table below). We average the runtime over 90
alignments (30 replicates with 3 levels of edge change rate each) for each network size (as
in the simulated data described above). Benchmarking was done in a single thread on a 72
core/3.10GHz Intel CPU, with 1TB available RAM.

Number of nodes Average Runtime (ms)
10 25.100
30 40.167
50 66.767
100 139.133
250 972.433
500 7603.233
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