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Summary
PeleLMeX simulates chemically reacting low Mach number flows with block-structured adaptive
mesh refinement (AMR). The code is built upon the AMReX (Zhang et al., 2019) library,
which provides the underlying data structures and tools to manage and operate on them across
massively parallel computing architectures. PeleLMeX algorithmic features are inherited from
its predecessor PeleLM (PeleLM Team, 2022) but key improvements allow representation of
more complex physical processes. Together with its compressible flow counterpart PeleC (Henry
de Frahan et al., 2023), the thermo-chemistry library PelePhysics and the multi-physics library
PeleMP, it forms the Pele suite of open-source reactive flow simulation codes.

PeleLMeX uses a finite volume approach to solve the multi-species reacting Navier-Stokes
equations in their low Mach number limit (Day & Bell, 2000), where the characteristic fluid
velocity is small compared to the speed of sound, and the effect of acoustic wave propagation is
unimportant to the overall dynamics of the system. Accordingly, acoustic wave propagation can
be mathematically removed from the equations of motion, allowing for a numerical time step
based on an advective CFL condition. This low Mach number limit mathematically translates
into a constraint on the divergence of the velocity field (Majda & Sethian, 1984). The
momentum equation is then solved for using a predictor/corrector method initially developed
for incompressible flows (Almgren et al., 1998) and later extended to reactive, variable-density
flows (Pember et al., 1998). In the low Mach framework, the thermodynamic pressure is
uniform in space but can evolve in time when simulating closed domains with chemical reactions
and additional mass injections (Nonaka et al., 2018). PeleLMeX uses an iterative Spectral
Deferred Correction (SDC) time advancement scheme (Nonaka et al., 2012, 2018) to ensure
a tight coupling of the fast diffusion/reaction and the comparatively slow advection, while
iteratively enforcing the low Mach number constraint. Advection terms are treated explicitly
using second-order Godunov schemes (AMReX-Hydro Team, 2022), diffusion terms are treated
semi-implicitly with a Crank-Nicholson scheme and the often stiffer reaction term is obtained
using a fully implicit Backward Differentiation Formula scheme (specifically, the CVODE
integrator (Balos et al., 2021) of the Sundials suite (Gardner et al., 2022; Hindmarsh et
al., 2005)). The solution of the linear systems arising in the implicit diffusion and velocity
projections are handled using AMReX’s native geometric multigrid (GMG) solver, but can also
be transferred to HYPRE (Falgout & Yang, 2002) if GMG fails. In contrast with PeleLM,
PeleLMeX relies on a non-subcycling approach to advance the numerical solution on an AMR
hierarchy, where all the levels are advanced together using the same time step, the size of
which is prescribed by a CFL condition across all the levels. This distinctive feature drove the
development of PeleLMeX as it enables extending the closed chamber algorithm described in
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(Nonaka et al., 2018) to an AMR hierarchy and incorporating more complex physical processes
such as flame/plasma interactions (Esclapez et al., 2020).

In addition, PeleLMeX uses an Embedded Boundary (EB) approach to represent complex
geometries: an arbitrary surface can be intersected with the Cartesian matrix of uniform cells,
and the numerical stencils are modified near cells that are cut by the EB. Redistribution
schemes (Giuliani et al., 2022) are then used for the explicit advection and diffusion updates
in order to alleviate the constraint associated with small cut cells. Through its dependency
to the multi-physics library PeleMP, PeleLMeX also inherits the ability to include Lagrangian
sprays as well as soot and radiation models.

PeleLMeX is written in C++ and is built upon the AMReX (Zhang et al., 2019) library from
which it inherits its parallel paradigm. It uses a MPI+X approach where MPI is used to
distribute AMR grid patches across CPU ranks and each grid can be further divided into logical
tiles spread across threads using OpenMP for multi-core CPU machines, or spread across GPU
threads using CUDA/HIP/SYCL on GPU-accelerated machines.

Statement of Need
Several software tools for reactive flow simulations can found online (often with limited access),
including unstructured body-fitted solvers based on OpenFOAM (Hassanaly et al., 2018), the
structured solver NGA2 (NGA2 Team, 2023), and the Sierra/Fuego solver (Domino et al.,
2003). In contrast with the aforementioned solvers, PeleLMeX is fully publicly available and
documented. Its unique features consist in combining an AMR approach with a low Mach
number formulation to achieve high performances from a small desktop station to the world’s
largest supercomputer. Recent code developments focused on enabling massively parallel
simulations at scale on high-performance accelerated computer architectures to tackle the
challenging requirements of fundamental and applied combustion research, as well as extending
the solver modeling capabilities by including Large Eddy Simulation (LES) closure models and
support for data-driven combustion models (Perry et al., 2022).

PeleLMeX is intended for students, researchers and engineers interested in understanding
complex combustion processes by performing high fidelity simulations. Although it can be used
to study laminar flames, its distinctive features make it particularly attractive for studying the
fine scale flame/turbulence interactions in combustion applications where AMR is necessary
to tackle the large scale separation and the computational resources available on the latest
heterogeneous exascale platform can be leveraged. In order to achieve energy, transport and
industrial decarbonization, fuel-flexible combustion devices must be designed and deployed to
accommodate hydrogen, ammonia and a wide range of biofuels. In this context, PeleLMeX
can prove a valuable tool to study alternative fuels combustion characteristics, flame dynamics
or pollutant formation mechanisms, both in academic idealized cases (Howarth et al., 2023) as
well as in device scale simulations (Appukuttan et al., 2023).
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