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Summary
To understand the dynamics of the brain, computational neuroscientists often study smaller
scale networks using simple cascade point-process models such as the Linear-Nonlinear-Poisson
(LNP) model and the Generalized Linear Model (GLM) (Gerstner et al., 2014; Meyer et al.,
2017; Paninski, 2004).

Stochastic models can give key insights into the behavior of a network on a systems level without
explicitly modeling the subcellular mechanisms of each neuron. They lack some biological
plausibility on the neuron level but have been shown to enjoy nice convexity properties, which
can be fitted to observed spike data (Paninski, 2004). Traditionally, these are used as encoding
models. For example, to study how multi-neuron systems process incoming stimuli (Pillow et
al., 2008). Recently, these models have been used as generative models for inverse problems
mapping activity to connectivity. As an example, (Das & Fiete, 2020) assessed bias and
reconstruction errors in this setting.

This software expands on a simulator developed for testing novel reconstruction techniques
using methods from the causal inference literature (Lepperød et al., 2020). It provides tunable
generative models in a flexible framework based on PyTorch. The primary use case, so far, has
been as a data-generator for inverse problems, but the framework can easily accommodate
more complicated models for encoding applications.

Statement of need
Linear non-linear cascade models are much used in computational neuroscience and come in
many flavors. Typical examples are SRM, LNP, GLM (Gerstner, 2008; Gerstner et al., 2014;
Meyer et al., 2017). What unites these models is that they all model the spike response of a
network through the same cascade-like sequence of steps. At each time step, a neuron receives
input from its environment and converts it to a firing rate by a nonlinear function. This
firing rate parametrizes a probability distribution from which spikes are drawn. This contrasts
hard-threshold-based models, in which spikes are emitted whenever a variable representing the
membrane potential exceeds a certain value. Although these models share many of the same
underlying principles, no unifying framework currently permits easy implementation and direct
comparison.

There exists a number of other simulation tools for simulating networks of neurons, notably
NEST (Gewaltig & Diesmann, 2007), Neuron (Carnevale & Hines, 2006), Brian2 (Stimberg
et al., 2019) and GENESIS (Bower et al., 2013). While all of these are primarily directed at
solving systems where the dynamics are given by a system of differential equations, NEST
includes a limited selection of pre-built stochastic point-process models similar to the ones
found in spikeometric. However, this selection currently consists of only two models, which
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are not included in the GPU compatible version NEST-GPU (Golosio et al., 2021; Tiddia et al.,
2022). There are also some torch-native frameworks like BindsNET (Hazan et al., 2018) and
snnTorch (Eshraghian et al., 2023) but these focus on learning rather than simulation and are
currently limited to LIF models. In general, spikeometric is more similar to the simulation
tools in its focus, but has the automatic parameter tuning and torch-compatibility of the
Spiking Neural Network libraries.

Implementation
The spikeometric package is a framework for simulating spiking neural networks using linear
non-linear cascade models in Python. It is built on the PyTorch Geometric package and uses
its powerful graph neural network modules and efficient graph representation. It is designed to
be flexible and easy to use, while also being competitive on speed. Moreover, it’s built in a way
that accommodates usage or implementation of multiple different models sharing principles
from the linear non-linear cascade family of models.

The torch backend makes simulating large networks on a GPU easy, with the extra benefit of
having a familiar use pattern, reducing the friction of picking up a new tool. The package relies
heavily on PyTorch Geometric (Fey & Lenssen, 2019), with the networks being represented
as torch_geometric Data objects and the models extending the MessagePassing base class.
The PyTorch Geometric framework is a popular deep learning framework originally designed
for Graph Neural Networks (GNNs), a class of neural networks for learning graph-related data
(Bronstein et al., 2021). It is the perfect setting for simulating neural networks with tunable
parameters, allowing us to formulate the model’s equations naturally in terms of vertices and
edges, and giving us access to easy automatic tuning of parameters e.g. to match a certain
firing rate, provided that the nonlinearity in the model is differentiable. The tuning functionality
allows for fitting arbitrary parameters and can provide a starting point for implementing
encoding models.

In addition to the models, the package includes dataset classes that can generate random
connectivity matrices from a distribution or load pre-constructed connectivity matrices into
torch_geometric’s Data objects to be passed straight to the model. These objects hold a
sparse representation of our connectivity matrices and can be batched together to form isolated
subgraphs of a big graph, letting us simulate many networks simultaneously.

Finally, to facilitate the common use pattern of adding an external stimulus to the simulation
and recording the resulting activity, we have included various stimulation classes that can be
easily added to the model and even tuned to provoke a certain response.
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