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Introduction
A gravitational-wave background (GWB) is expected from the superposition of all gravitational
waves (GWs) too faint to be detected individually, or by the incoherent overlap of a large
number of signals in the same band (Renzini et al., 2022). A GWB is primarily characterized
by its spectral emission, usually parameterized by the GW fractional energy density spectrum
ΩGW(𝑓), which is the target for stochastic GW searches (Allen & Romano, 1999),

ΩGW(𝑓) = 1
𝜌𝑐

𝑑𝜌GW(𝑓)
𝑑 ln 𝑓

,

where 𝑑𝜌GW is the energy density of GWs in the frequency band 𝑓 to 𝑓 + 𝑑𝑓, and 𝜌𝑐 is the
critical energy density of the Universe. Different categories of GW sources may be identified
by the unique spectral shape of their background emission; hence, the detection of a GWB will
provide invaluable information about the evolution of the Universe and the population of GW
sources within it.

Statement of need
Due to the considerable amount of data to analyze, and the vast panorama of GWB models to
test, the detection and characterization of a GWB requires a community effort. Furthermore,
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data handling and model building entail a number of different choices, depending on specific
analysis purposes. Up until the previous LIGO-Virgo-KAGRA Collaboration (LVK) observing
run, O3, the collaboration has relied on an internal MATLAB-based pipeline available at (LVK,
2020) to perform stochastic analyses. This pipeline lacks the ability to perform parameter
estimation, as well as modularity and flexibility. This exemplifies the need for an accessible,
flexible, and user-friendly open-source codebase for the current and upcoming LVK runs: pygwb.
To fully cater to user needs, pygwb is modular and extensively customizable, and is accompanied
by exhaustive documentation.

Method
The GWB spectrum estimation implemented in pygwb is based on the unbiased minimum
variance cross-correlation estimator (Romano & Cornish, 2017),

Ω̂GW,𝑓 =
Re[𝐶𝐼𝐽,𝑓]

𝛾𝐼𝐽(𝑓)𝑆0(𝑓)
.

Here, 𝐶𝐼𝐽,𝑓 is the cross-correlation spectral density between two detectors 𝐼 and 𝐽, 𝛾𝐼𝐽 is the
overlap reduction function (Allen & Romano, 1999), and 𝑆0(𝑓) = 3𝐻2

0
10𝜋2

1
𝑓3 , where 𝐻0 is the

Hubble constant today (Aghanim & others, 2020). The variance of the estimator is given by

𝜎2
GW,𝑓 = 1

2𝑇Δ𝑓
𝑃𝐼,𝑓𝑃𝐽,𝑓

𝛾2
𝐼𝐽(𝑓)𝑆2

0(𝑓)
,

where 𝑃𝐼,𝑓 is the power spectral density from detector 𝐼 and 𝑇 is the duration of data used
to produce the above spectral densities. This estimator is optimal and unbiased under the
assumption that the signal is Gaussian, isotropic, and continuous. Details on how the estimation
is carried out, as well as the implementation of the estimator on large datasets and with many
potentially overlapping data segments can be found in our companion methods paper (Renzini
et al., 2023).

Model testing in pygwb is performed through Bayesian inference on a select set of parameters,
given a parametric GWB model and a likelihood 𝑝 of observing the data given the model.
Concretely, the above cross-correlation estimator is input data to a Gaussian residual likelihood,

𝑝 (Ω̂𝐼𝐽
GW,𝑓|𝜆) ∝ exp⎡⎢

⎣
−1
2

𝐵
∑
𝐼𝐽

∑
𝑓

(
Ω̂𝐼𝐽

GW,𝑓 −ΩM(𝑓|𝜆)
�̂�𝐼𝐽
GW,𝑓

)
2

⎤⎥
⎦
,

where ΩM(𝑓|𝜆) is the GWB model and 𝜆 are its parameters. pygwb currently admits a variety
of GWB models, compatible with the Gaussian likelihood above. More information about the
parameter estimation and the implemented models can be found in our companion methods
paper (Renzini et al., 2023).

pygwb

pygwb is a Python-based, open-source stochastic GW analysis package specifically tailored
to searches for isotropic GWBs with current ground-based interferometers, namely the Laser
Interferometer Gravitational-wave Observatory (LIGO), the Virgo observatory, and the KAGRA
detector.

The pygwb package is class-based and modular to facilitate the evolution of the code and
to increase flexibility of the analysis pipeline. The advantage of the Python language lies in
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rapid code execution, while maintaining a certain level of user-friendliness, which results in
a shallow learning curve and will encourage future contributions to the code from the whole
GW community. A summary of all pygwb modules and its main external dependencies can be
found in the pygwb schema Figure 1.

The package is compatible with GW frame files in a variety of formats, relying on the I/O
functionality of gwpy (Macleod et al., 2021). NumPy (Harris et al., 2020) is heavily used
within the pygwb code, as well as matplotlib (Hunter, 2007) for plotting purposes. Some
of the frequency-related computations rely on functionalities of the scipy (Virtanen et al.,
2020) package. The astropy (Astropy Collaboration et al., 2022) package is employed for
cosmology-related computations. The parameter estimation module included in pygwb is based
on Bilby (Ashton et al., 2019) and the dynesty (Speagle, 2020) sampler package.

A customizable pipeline script, pygwb_pipe, is provided with the package and can be run in
default mode, which reproduces the methodology of the LVK isotropic analysis implemented
on the most recent observation run (Abbott et al., 2021). On the other hand, the modularity
of the package allows users to develop custom pygwb pipelines to fit their needs. A set
of simple statistical checks can be performed on the data after a pygwb run by using the
statistical_checks module. In addition, a parameter estimation script, pygwb_pe, is also
included and allows to test a subset of default models with user-defined parameters. pygwb_pe

is based on the pygwb parameter estimation module, pe, which allows the user to test both
predefined and user-defined models and obtain posterior distributions on the parameters of
interest. Users are encouraged to develop and test their own models within the pe module.
The pygwb package also contains built-in support for running on HTCondor-supported servers
using dag files to parallelize the analysis of long stretches of data. Using the dedicated
pygwb_combine script, the output can be combined into an overall estimation of the GWB for
the whole data set.

The source code can be found at https://git.ligo.org/pygwb/pygwb and https://github.
com/a-renzini/pygwb, and can be installed from PyPi via pip install pygwb. The online
documentation, tutorials and examples are hosted at https://pygwb.docs.ligo.org/pygwb/
index.html. The package includes a unit test suite which currently covers 80% of the modules.
pygwb is released under a OSI Approved :: MIT License.
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Figure 1: pygwb schema.
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