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Summary
The application of open science and machine learning to scientific, engineering, and industry-
relevant problems is a critical component of the cross-department U.S. Artificial Intelligence
(AI) strategy highlighted e.g., by the AI Initiative, the recent National AI Strategy report
(“Strengthening and Democratizing the u.s. Artificial Intelligence Innovation Ecosystem - an
Implementation Plan for a National Artificial Intelligence Research Resource,” 2023), the Year
of Open Data, Materials Genome Initiative (Pablo et al., 2019; Ward & Warren, 2015), and
more. A key aspect of these strategies is to ensure that infrastructure exists to make datasets
easily accessible for training, retraining, reproducing, and verifying model performance on
chosen tasks. However, the discovery of high-quality, curated datasets adhering to the FAIR
principles (findable, accessible, interoperable and reusable) remains a challenge.

To overcome these dataset access challenges, we introduce Foundry-ML, software that combines
several services to provide researchers capabilities to publish and discover structured datasets
for ML in science, specifically in materials science and chemistry. Foundry-ML consists of a
Python client, a web app, and standardized metadata and file structures built using services
including the Materials Data Facility(Blaiszik et al., 2016, 2019) and Globus (Ananthakrishnan
et al., 2018; Chard et al., 2015). Together, these services work in conjunction with Python
software tooling to dramatically simplify data access patterns, as we show below.

Statement of need
The processes by which high-quality structured science datasets are published and accessed
remains decentralized, without shared standards, and scattered with some exceptions (e.g., Wu
et al. (2018)). With Foundry-ML, we provide 1) a simple Python interface that allows users
to access structured ML-ready materials science and chemistry datasets with just a few lines
of code, 2) a prototype web-based interface for dataset search and discovery, and 3) software
that enables users to publish their own ML-ready datasets in a self-service manner.
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Foundry-ML focuses foremost on accessibility and reproducibility. Figure 1 shows an example
of how, with just a few lines of code, researchers can access a curated collection of ML-ready
datasets, the associated metadata describing the dataset contents, split details (e.g., train, test,
validate), and other information (e.g., number of entries). As of Q1 2023, we have collected
and made available 30 datasets in Foundry with data representations including tabular data
(e.g., csv, Excel), key-value data (e.g, JSON), image sets, and hierarchical data (e.g., HDF5).

Figure 1: A Foundry-ML use case for zeolite design. (a) A user instantiates the Foundry-ML Python
client and loads the descriptive metadata using the DOI. (b) Descriptive metadata includes information
about the keys included in the datasets, associated units, and a short description. The metadata also
include information about the dataset including the associated splits (e.g., train, test, validate), and the
amount of data included. (c) A user can then load the data using the load_data function. This function
returns a Pandas or Dask dataframe for tabular data. The zeolite dataset shown here, its metadata, and
the data itself from researchers Daniel Schwalba-Koda and Rafael Gomez-Bombarelli.

Foundry-ML is built upon a solid base. We have developed Foundry-ML using the Materials
Data Facility (MDF) (Blaiszik et al., 2016, 2019) and Globus services like Auth, Transfer, and
Search. Foundry-ML users can upload large datasets (MDF supports multi-TB databases, with
potentially millions of files), making them easy to share, use, and discover by the rest of the
scientific community. All datasets are made available through the Foundry-ML software, the
Foundry-ML webapp and also via Globus endpoints that support both Globus and HTTPS
access.

Beyond just simplified data access, enhanced interpretability is a key feature of Foundry-ML.
Foundry-ML datasets have required metadata (see Figure 1b) that are provided by the authors
of each dataset. All metadata are stored in Globus Search (Chard et al., 2015) to facilitate
queries. To make these metadata easily usable by Foundry-ML users, query helpers are provided
via the Foundry-ML Python client to perform common actions e.g., listing all datasets, selecting
datasets by DOI, and more.

In addition to the Python software interface to each dataset, we have developed a prototype
web interface (Figure 2) that lists all datasets with instructions on how to access them and key
features of each dataset (e.g., number of entries, inputs, targets, type of data, tags, free text
description). While the examples presented here come from the domains of materials science
and chemistry, Foundry-ML is designed to be domain agnostic, and since similar problems exist
in other domains, we expect these approaches to generalize. Generalizing to other domains will
allow the same software and services to help solve similar problems across scientific domains.
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Figure 2: Foundry Website UI for browsing Datasets. This figure shows a web user interface for browsing
available datasets with summary information about the datasets.

Usage
Foundry has been successfully used in educational curricula (Stan et al., 2021) and to publish
datasets by research teams at the University of Chicago, Argonne National Lab, the University
of Toronto (Huang et al., 2022), 3M (Schneider et al., 2022), the University of Wisconsin (Li
et al., 2021; Wei et al., 2021), MIT (Schwalbe-Koda et al., 2021) Figure 2, and many more.
In Figure 2, we highlight a use case for the ML-guided design of organic structure–directing
agents (OSDAs) to promote zeolite formation from the team of Gomez-Bombarelli at MIT. By
using only the Foundry-ML software and the dataset DOI Figure 1a, which could be cited in a
paper or retrieved from the Foundry-ML web app or software, a researcher can load descriptive
metadata Figure 1b to understand the dataset contents, and load the data Figure 1c for
analysis, exploration, and replication. A notebook showcasing this use case is available at in
the GitHub examples linked in the Documentation section below.

Future Directions
In future work, we intend to add capabilities to Foundry-ML that enable publication and
connection of datasets with ML models creating a combined ecosystem of datasets and
models. This work will be completed in collaboration between two National Science Foundation
(NSF) projects, (#1931306) “Collaborative Research: Framework: Machine Learning Materials
Innovation Infrastructure” and (#2209892) “Garden: A FAIR Framework for Publishing and
Applying AI Models for Translational Research in Science, Engineering, Education, and Industry”.
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We also plan to generalize the metadata and extend these capabilities to scientific datasets in
domains beyond materials and chemistry.

Documentation
Detailed Foundry-ML documentation is available via GitBook at the following location GitBook
documentation. We have also have compiled example notebooks that show how to publish,
retrieve, and use select Foundry-ML datasets.
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