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Summary
Quantum Monte-Carlo (QMC) simulations allow to compute the electronic structure of quantum
systems with high accuracy and can be parallelized over large compute resources. QMC relies
on the variational principle and optimize a wave function ansatz to minimize the total energy
of the quantum system. QMCTorch expresses this optimization process as a machine learning
problem where the wave function ansatz is encoded in a physically-motivated neural network.
The use of PyTorch as a backend to perform the optimization, allows leveraging automatic
differentiation and GPU computing to accelerate the development and deployment of QMC
simulations. QMCTorch supports the use of both Gaussian and Slater type orbitals via interface
to popular quantum chemistry packages pyscf and ADF.

Statement of need
QMCTorch is a Python package using PyTorch (Paszke et al., 2019) as a backend to perform
Quantum Monte-Carlo (QMC) simulations, namely Variational Monte-Carlo, of molecular
systems. Many software such as QMCPack(Kim et al., 2018), QMC=Chem (Scemama et al., 2013),
CHAMP (C. Filippi, 2019) provide high-quality implementation of advanced QMC methodologies
in low-level languages (C++/Fortran). Python implementations of QMC such as PAUXY (Fionn
Malone, n.d.) and PyQMC (Wheeler et al., 2023) have also been proposed to facilitate the
use and development of QMC techniques. Large efforts have been made to leverage recent
development of deep learning techniques for QMC simulations with for example the creation
of neural-network based wave-function ansatz (Choo et al., 2020; Han et al., 2019; Hermann
et al., 2020; Inui et al., 2021; Kessler et al., 2021; Lin et al., 2023; Pfau et al., 2020; Schätzle
et al., 2021; Yang et al., 2020) that have lead to very interesting results. QMCTorch allows to
perform QMC simulations using physically motivated neural network architectures that closely
follow the wave function ansatz used by QMC practitioners. Its architecture allows to rapidly
explore new functional forms of some key elements of the wave function ansatz. Users do not
need to derive analytical expressions for the gradients of the total energy w.r.t. the variational
parameters, that are simply obtained via automatic differentiation. This includes for example
the parameters of the atomic orbitals that can be variationally optimized and the atomic
coordinates that allows QMCTorch to perform geometry optimization of molecular structures.
In addition, the GPU capabilities offered by PyTorch combined with the parallelization over
multiple computing nodes obtained via Horovod (Sergeev & Balso, 2018), allow to deploy the
simulations on large heterogeneous computing architectures. In summary, QMCTorch provides
QMC practitioners a framework to rapidly prototype new ideas and to test them using modern
computing resources.

Renaud. (2023). QMCTorch: a PyTorch Implementation of Real-Space Quantum Monte Carlo Simulations of Molecular Systems. Journal of Open
Source Software, 8(91), 5472. https://doi.org/10.21105/joss.05472.

1

https://orcid.org/0000-0001-9589-2694
https://doi.org/10.21105/joss.05472
https://github.com/openjournals/joss-reviews/issues/5472
https://github.com/NLESC-JCER/QMCTorch
https://doi.org/10.5281/zenodo.10122190
http://jarvist.github.io/
https://orcid.org/0000-0003-1938-4430
https://github.com/tonnylou44853
https://github.com/scemama
https://github.com/AbdAmmar
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05472


Wave Function Ansatz

Figure 1: General architecture of the neural network used by QMCTorch to encode the wave function
ansatz. The neural network computes and assembles the different elements of the wave function ansatz
and can be used to compute the electronic density required for the sampling and the total energy of the
system required for the wave function optimization.

The neural network used to encode the wave-function ansatz used in QMCTorch is shown
in Fig. 1. As common in QMC simulations, the wave function is given by the product
of a Jastrow factor, 𝐽(𝑟), that accounts for electronic correlations and a sum of Slater
determinants, 𝐷↕(𝑟↕), built over the molecular orbitals of the spin up and down electrons:
Ψ(𝑟) = 𝐽(𝑟)∑𝑛 𝑐𝑛𝐷

↑
𝑛(𝑟↑)𝐷↓

𝑛(𝑟↓).

Jastrow Factor The Jastrow layer computes the sum of three components: an electron-
electron term 𝐾𝑒𝑒; an electron-nuclei term 𝐾𝑒𝑛; and a three body electron-electron-nuclei
term 𝐾𝑒𝑒𝑛. The sum is then exponentiated to give the Jastrow factor: 𝐽(𝑟𝑒𝑒, 𝑟𝑒𝑛) =
exp (𝐾𝑒𝑒(𝑟𝑒𝑒) + 𝐾𝑒𝑛(𝑟𝑒𝑛) + 𝐾𝑒𝑒𝑛(𝑟𝑒𝑒, 𝑟𝑒𝑛)) where 𝑟𝑒𝑒 and 𝑟𝑒𝑛 are the electron-electron and
electron-nuclei distances. Several well-known Jastrow factor functional forms, as for example
the electron-electron Pade-Jastrow: 𝐾(𝑟𝑒𝑒) =

𝜔0𝑟𝑒𝑒
1+𝜔𝑟𝑒𝑒

, where 𝜔 is a variational parameter, are
already implemented and available for use. Users can also define their own functional forms
for the different kernel functions, 𝐾, and explore their effects on the resulting optimization.

Backflow Transformation The backflow transformation layer, BF, creates quasi-particles by
mixing the electronic positions of the electrons: q𝑖 = r𝑖+∑𝑖≠𝑗 𝐾𝐵𝐹(𝑟𝑖𝑗)(r𝑖− r𝑗) (Holzmann
& Moroni, 2019; Schmidt et al., 1981). Well-known transformations such as: 𝐾𝐵𝐹 = 𝜇

𝑟𝑖𝑗
where 𝜇 is a variational parameter, are already implemented and ready to use. Users can also
easily specify the kernel of the backflow transformation, 𝐾𝐵𝐹 to explore its impact on the
wave function optimization.

Atomic Orbitals The Atomic Orbital layer AO computes the values of the different atomic
orbitals of the system at all the positions 𝑞𝑒. Both Slater type orbitals (STOs) and Gaussian
type orbitals (GTOs) are supported. The initial parameters of the AOs are extracted from
popular quantum chemistry codes, pyscf (Sun et al., 2017) and ADF (Velde et al., 2001).
During the optimization, the parameters of the AOs (exponents, coefficients) are variational
parameters that can be optimized to minimize the total energy. Since GTOs can introduce
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a significant amount of noise in the QMC simulations, QMCTorch offers the possibility to fit
GTOs to single exponent STOs.

Molecular Orbitals The Molecular Orbital layer, MO, computes the values of all the MOs at
the positions of the quasi particles. The MO layer is a simple linear transformation defined by
MO = AO ⋅𝑊𝑇

𝑆𝐶𝐹, where 𝑊𝑇
𝑆𝐶𝐹 is the matrix of the MOs coefficients on the AOs. The initial

values of these coefficients are obtained from a Hartree-Fock (HF) or Density Functional Theory
(DFT) calculation of the system via pyscf or ADF. These coefficients are then variational
parameters that can be optimized to minimize the total energy of the system.

Slater Determinants The Slater determinants layer, SD, extracts the spin up/down matrices
of the different electronic configurations specified by the user. Users can freely define the
number of electrons as well as the number and types of excitations they want to include in the
definition of their wave function ansatz. The SD layer will extract the corresponding matrices,
multiply their determinants and sum all the terms. The CI coefficients of the sum can be
freely initialized and optimized to minimize the total energy.

The Jastrow factor and the sum of Slater determinants are then multiplied to yield the final
value of the wave function calculated for the electronic and atomic positions Ψ(𝑅) with
𝑅 = {𝑟𝑒, 𝑅𝑎𝑡}. Note that the backflow transformation and Jastrow factor are optional and
can be individually removed from the definition of the wave function ansatz.

Sampling, Cost Function & Optimization
QMC simulations use samples of the electronic density to approximate the total energy of the
system. In QMCTorch, Markov-Chain Monte-Carlo (MCMC) techniques, namely Metropolis-
Hasting and Hamiltonian Monte-Carlo, are used to obtained those sample. Each sample, 𝑅𝑖,
contains the positions of all the electrons contained in the system. MCMC techniques require
the calculation of the density for a given positions of the electrons: Π(𝑅𝑖) = |Ψ(𝑅𝑖)|2 that
can simply obtained by squaring the result of a forward pass of the network described above.

The value of local energy of the system is then computed at each sampling point and these
values are summed up to compute the total energy of the system: 𝐸 = ∑𝑖

𝐻Ψ(𝑅𝑖)
Ψ(𝑅𝑖)

, where
𝐻 is the Hamiltonian of the molecular system: 𝐻 = −1

2 ∑𝑖 Δ𝑖 + 𝑉𝑒𝑒 + 𝑉𝑒𝑛, with Δ𝑖 the
Laplacian w.r.t the i-th electron, 𝑉𝑒𝑒 the coulomb potential between the electrons and 𝑉𝑒𝑛
the electron-nuclei potential. In QMCTorch, the calculation of the Laplacian of the Slater
determinants can be performed using automatic differentiation but analytical expressions have
also been implemented as they are computationally more robust and less expensive (Claudia
Filippi et al., 2016). The gradients of the total energy w.r.t the variational parameters of
the wave function, i.e. 𝜕𝐸

𝜕𝜃𝑖
are simply obtained via automatic differentiation. Thanks to this

automatic differentiation, users can define new kernels for the backflow transformation and
Jastrow factor without having to derive analytical expressions of the energy gradients.

Any optimizer included in PyTorch (or compatible with it) can then used to optimize the
wave function. This gives users access to a wide range of optimization techniques that they
can freely explore for their own use cases. Users can also decide to freeze certain variational
parameters or defined different learning rates for different layers. Note that the positions of
atoms are also variational parameters, and therefore one can perform geometry optimization
using QMCTorch. At the end of the optimization, all the information relative to the simulations
are dumped in a dedicated HDF5 file to enhance reproducibility of the simulations.

Example
from torch import optim

from qmctorch.scf import Molecule
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from qmctorch.wavefunction import SlaterJastrow

from qmctorch.solver import Solver

from qmctorch.sampler import Metropolis

# define the molecule

mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', calculator='pyscf', basis='sto-3g')

# define the wave function ansatz

wf = SlaterJastrow(mol, configs='single_double(2,2)').gto2sto()

# define a Metroplos Hasting Sampler

sampler = Metropolis(nwalkers=5000, nstep=200, nelec=wf.nelec, init=mol.domain('atomic'))

# define the optimizer

opt = optim.Adam(wf.parmaters(), lr=1E-3)

# define the solver

solver = Solver(wf=wf, sampler=sampler, optimizer=opt)

# optimize the wave function

obs = solver.run(50)

Figure 2: Result of the optimization of the wave function of LiH and NH3 using atomic orbitals provided
by pyscf, ADF and also a STO fit of the pyscf atomic orbitals. The vertical axis shows the difference
between the variational energy and the true groud state energy. The horizontal dashed line indicate the
Hartree-Fock energy.

The snippet of code above shows a typical example of QMCTorch script. A Molecule object is
first created by specifying the atomic positions and the calculator required to run the HF or
DFT calculations (here pyscf using a sto-3g basis set). This molecule is then used to create
a SlaterJastrow wave function ansatz. Other options, such as the required Jastrow kernel,
active space, and the use of GPUs can also be specified here. A sampler and optimizer are
then defined that are then used with the wave function to instantiate the solver. This solver
can then be used to optimize the variational parameters, that is done here through 50 epochs.
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Fig. 2 shows typical optimization runs for two different molecular structures, LiH and NH3
using atomic orbitals provided by pyscf, ADF and also a STO fit of the pyscf atomic orbitals.
As seen in this figure, the variance of the local energy values obtained with the GTOs provided
by pyscf is a limiting factor for the optimization. A simple STO fit of these atomic orbitals
leads to variance comparable to those obtained with the STOs of ADF.
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