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Summary
GMP-Featurizer is a lightweight, accurate, efficient, and scalable software package for calcu-
lating the Gaussian Multipole (GMP) features (Lei & Medford, 2022) for a variety of atomic
systems with elements across the periodic table. Starting from the GMP feature computation
module from AmpTorch (AMPTorch, 2020), the capability of GMP-Featurizer has since been
greatly improved, including its accuracy and efficiency (please refer to the Overview section for
details), as well as the ability to parallelize on different cores, even machines. Moreover, this
Python package only has very few dependencies that are all standard Python libraries, plus
CFFI for C++ code interfacing and Ray (Moritz et al., 2018) for parallelization, making it
lightweight and robust. A set of unit tests are designed to ensure the reliability of its outputs.
A set of extensive examples and tutorials, as well as two sets of pseudopotential files (needed
for specifying the GMP feature set), are also included in this package for its users. Overall, this
package is designed to serve as a standard implementation for chemical and material scientists
who are interested in developing models based on GMP features. The source code for this
package is freely available to the public under the Apache 2.0 license.

Statement of need
Representing the local and global environments in atomic systems in a descriptive and efficient
way has been an important research topic in the chemistry, chemical engineering, and material
science communities. Having good representations, or features, of chemical environments
has proven to be vital for building reliable machine learning (ML) models. These models can
accurately predict properties of atomic systems, and in limited cases have even been used for
discovering or designing new chemicals and materials (Collins et al., 2017; Zuo et al., 2021).
So far, scientists and researchers have designed featurization schemes like the atom-centered
symmetry function (ACSF) (Behler & Parrinello, 2007), the smooth overlap of atomic positions
(SOAP) (Bartók et al., 2017), and the Gaussian Momentum (Zaverkin & Kästner, 2020)
schemes. More recently, graph representation and ML models based on them (e.g. MEGNet
(Chen et al., 2019), CGCNN (Xie & Grossman, 2018)) have been successful. Gaussian
Multipole, or GMP (Lei & Medford, 2022), is a recently developed scheme of featurizing local
chemical environments, i.e. the chemical characteristics of spaces near individual atoms in
molecules and crystal structures. GMP approximates underlying local electronic environments
(e.g. approximated distribution of local electron cloud) using multipole expansion, the theory of
which is introduced in a prior publication (Lei & Medford, 2022). The featurization scheme is
flexible, depending only on prior assumptions of atomic identity and position, and is therefore
applicable to various atomic systems (molecules, nanoparticles, periodic crystals, etc.) in which
atomic arrangements are known. Feature computation is fast, and the representation accuracy
is systematically improvable. Moreover, thanks to the deep connection between the GMP
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features and physics, we have previously shown that ML models based on these features are
transferable (Lei & Medford, 2022). With these characteristics, GMP featurization could be
useful to a broad audience for future research in chemistry and materials science. Therefore,
having lightweight, reliable, and open software that can calculate these features in a fast and
accurate way is desirable.

Overview
The GMP-Featurizer package is mainly written in C++ and Python. C++ is used for the
underlying computation module for speed, and Python is used for an intuitive and readable API
for scientists and researchers in the community to use. Two of the most widely used Python
libraries in chemistry and materials science are ASE (Larsen et al., 2017) and pymatgen (Ong
et al., 2013). The GMP-featurizer library provides APIs that can read atomic systems as input
from these libraries, though they are not required as dependencies. This allows the users to
leverage the I/O functionalities of these two packages to get data into the format required by
GMP-Featurizer. On top of that, Ray is used to parallelize the feature computation, and the
parallelization efficiency is close to 100%. Overall, this package is designed to be lightweight,
easy to use, fast, and accurate.

The main inputs of the workflow are a Python dictionary that contains the necessary hyperpa-
rameters for defining the desired GMP feature set, and a list of atomic systems that needs to
be featurized. The native way of defining atomic systems is simply a Python dictionary that
contains information like lattice vectors, atom positions, atom types, etc. As mentioned,
the package also supports both ASE Atoms and pymatgen Structure objects with pre-defined
converters. This capability is extensible to other formats with custom-made converters. It
also supports the featurization of disordered atomic structures, which is unsupported by many
popular featurization methods. Please refer to the examples for more details. The output is
simply a list of dictionaries containing the resulting features, and their derivatives if requested,
for the atomic structures.

By default, the package computes GMP features at each atom position, but it can also be used
to compute the features at any set of reference points inside the atomic system by providing a
list of the positions of interest for each atomic structure. Users can also specify the number of
cores for parallel computing. Noticeably, the GMP-featurizer package, unlike common local
chemical environment featurization schemes (including the original implementation of GMP
in AmpTorch), eliminates the need to define a hard distance cutoff for determining the local
environment to be featurized. Instead, users simply need to state the desired accuracy of
the features. GMP-featurizer then automatically identifies neighboring atoms that will make
meaningful contributions to each GMP feature relative to the set accuracy level, and computes
the features. This change is significant, because GMP featurizes the underlying electron density
of chemical systems, which can vary greatly between elements and hence influence the GMP
features differently. For instance, a distant mercury atom may have a larger impact on GMP
features than a closer hydrogen atom. Additionally, different GMP features respond differently
to changes in atomic positions, making a universal cutoff inefficient and potentially leading
to a lot of unnecessary computations (when the cutoff is set too high) or inaccurate features
(when set too low). GMP-featurizer’s new adaptive scheme circumvents these issues. It not
only enhances efficiency and precision but also simplifies the user experience.

Moreover, computed results can be cached locally for convenient reprocessing of datasets,
e.g. after augmentation or modification. Two sets of standard pseudopotential files are also
provided, which are necessary to specify GMP feature sets, but may be difficult to collect from
either commercial or open-source density functional theory systems. Lastly, a series of tutorials
are provided in the repository to help users with getting starting and understanding the various
features of the codebase.
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