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Summary
PyThia is a Python package for quantifying uncertainties by computing polynomial chaos
surrogates for computationally expensive parametric models (e.g., parametric partial differential
equations) and for performing a local and global sensitivity analysis of those parameters. At
its core, PyThia aims to be close to mathematical foundations, general in its applications,
and easy to use by non-experts. To achive broad applicability in many areas, PyThia relies
on a non-intrusive regression approach (Farchmin et al., 2019; Sudret, 2008). This allows
it to compute global polynomial approximations of complex physical models by accessing
samples of inputs and outputs alone. In particular, this means that PyThia can be used without
any adaptation of legacy software, independent of operating system, programming language,
involved proprietary software, or computing device.

PyThia covers polynomial chaos expansions for arbitrary combinations of uniform, normal,
Gamma, and Beta distributed parameters. The polynomial chaos expansion is handled in a
sparse manner, meaning that the user can specify the desired expansion terms manually or
automatically through a heuristic approach. PyThia is able to compute a surrogate for any
kind of input/output training data. However, as it is designed for high-dimensional inverse
problems, random sampled data are typically preferred over approaches such as quadrature
points or sparse grids. Sample generation, according to a user-specified density or directly
from the predefined parameter domains, is included in PyThia and can be used to create
training inputs for the computationally expensive physical model of interest. It is even possible
to create input samples according to an optimal distribution with respect to the polynomial
chaos expansion of the stochastic parameters (Cohen & Migliorati, 2017; Farchmin et al.,
2020). The derived surrogate can then be used as an approximation to the physical model
in parameter reconstruction tasks (Farchmin et al., 2020) or for local and global sensitivity
analysis (Farchmin et al., 2019; Sudret, 2008). The latter comes without any computational
overhead due to the use of an orthonormal polynomial basis in the chaos expansion.

Statement of need
In many physical applications it is only possible to infer the quantities of interest indirectly,
which often involves computationally expensive numerical simulations to solve the inverse
problem (Andrle et al., 2019; Jäger et al., 2021). As a way to circumvent this, surrogates to
approximate the numerical model can be derived. In particular, surrogates based on polynomial
chaos expansions are very versatile as they can be used to approximate any function with
a second moment (Xiu & Karniadakis, 2002), even in very high-dimensional spaces (Eigel
et al., 2014, 2023a, 2023b; Schwab & Stuart, 2012). In contrast to similar model classes
such as neural networks, it is possible to exploit the mathematical structure of the polynomial
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chaos expansion to compute moments (e.g., mean and variance), marginals, global parameter
sensitivities (Sudret, 2008), and arbitrary derivatives of the surrogate analytically without any
computational overhead. Additionally, the linear regression used to compute the polynomial
chaos surrogate can be done in a non-intrusive way without the need to change the underlying
numerical model by relying on function evaluations in randomly drawn samples. Using the
polynomial chaos basis, these samples can be drawn from an optimal distribution, which even
yields upper bounds for the required number of function evaluations needed to compute the
surrogate.

Target Audience
PyThia is based on the numpy and scipy packages only and is thus very easy to install and run in
almost any Python environment. Moreover, to build a polynomial chaos surrogate of an arbitrary
function, PyThia relies on a priori generated function evaluations. This non-intrusive approach
allows for maximal interoperability of PyThia with other code environments, i.e., different
languages, machines and even proprietary software, as no interface between PyThia and the
model computation framework has to be implemented. In combination with the flexible choice
of expansion multiindex set and the possibility to generate an optimal experimental design,
PyThia provides an easy to use but still very flexible tool for arbitrary function approximation.
Hence the primary target audience for PyThia are experimental physicists and engineers, who
often do not have the extensive mathematical background required to fine tune complicated
algorithms and who typically face very intricate simulation frameworks which cannot be adapted
easily. For that reason PyThia has been utilized in meteorological applications ranging from
shape reconstruction of circuit elements on photolithography masks (Casfor et al., 2020;
Farchmin et al., 2019, 2020) to sensitivity analysis for modeling electrocardiography signals in
humans (Winkler et al., 2022).

State of the Field
Many software packages covering uncertainty quantification and function approximation
using polynomial chaos are available both in python, e.g., (Baudin et al., 2017; Feinberg &
Langtangen, 2015; Mohammadi et al., 2021; Weise et al., 2020), and other programming
languages, e.g., (Mandelli et al., 2012--2023; Marelli & Sudret, 2018--2023).

One of the main differences between PyThia and other software packages is the possibility to
specify the multiindex set manually. Typically, the multiindex set is either assembled directly
or iteratively based on an ℓ𝑞-bound of the multiindices (Lüthen et al., 2021). The pygpc

library also allows for direct (sparse) specification of the multiindex set, but does not contain
any routines to assemble these sets. Separating the creation of the multiindex set from the
polynomial chaos approximation has the advantage that it is very accessible to test different
types of surrogate model classes and provides a flexible interface for different schemes to
choose an optimal set. Exemplary, PyThia implements a heuristic to choose the index set
based on an estimate of the Sobol indices, but other approaches such as LASSO (Tibshirani,
1996), LARS (Efron et al., 2004) or estimator based adaptive choices (Eigel et al., 2023b) are
possible as well.

Another important feature concerns the experimental design for the polynomial chaos expansion.
As deterministic quadrature rules suffer from the curse of dimensionality, most libraries
implement random or pseudo random sampling schemes for the polynomial chaos regression.
However, as random sampling typically yields an extensive amount of evaluations of a potentially
expensive model, it is crucial to choose a sampling scheme which requires as least samples as
possible. To our knowledge PyThia is the only available software package providing the optimal
weighted least-squares sampling scheme described in (Cohen & Migliorati, 2017), which gives
provable optimal upper bounds for the required number of samples.
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