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Summary
Recent developments in computer vision have brought about a new set of techniques called
Video Motion Magnification, which are capable of identifying and magnifying eye-imperceptible
movements in video data. These techniques have proved effective in applications such as
producing visual representations of an object’s operating deflection shapes or recovering sound
from a room behind soundproof glass. Our research explores the new possibilities of motion
magnification applied to Structural Health Monitoring (SHM) and vibration testing, harnessing
the latest advances in deep-learning to achieve state-of-the-art results.

Vision-based damage detection techniques can reduce sensor deployment costs while providing
accurate, useful, and full-field readings of structural behavior. We present a new video
processing approach that allows the treatment of video data to obtain vibrational signatures of
complex structures. This approach enables the identification of very light structural damage in
a controlled lab environment. The presented software is based on the use of state-of-the-art
deep-learning video motion magnification techniques to offer an easy-to-use, effective, full-field
tool for SHM at a fraction of the cost of contact-based techniques.

Related work
This work is based on the method developed by Lado-Roigé et al. (2022) for vibration-based
damage detection and on the Swin Transformer Based Video Motion Magnification (STB-VMM)
method (Lado-Roigé & Pérez, 2023), which improves on the previous motion magnification
backend (Oh et al., 2018) in terms of image quality.

Other researchers have used similar techniques for vibration testing (Eitner et al., 2021; Molina-
Viedma et al., 2018). However, to the authors’ knowledge, non have released a software tool
to go along with their publications. ViMag offers a simple interface to replicate some of these
experiments using state-of-the-art learning-based video motion magnification.

Figure 1: Video sequence to signal pipeline

Motion magnification is a video processing technique that consists on the transformation of
input frames to exaggerate motion. The goal of these algorithms is to amplify subtle motions in
a video sequence, allowing the visualization of vibrations and deformations that would otherwise
be invisible. Video motion magnification was first developed by C. Liu et al. (2005) and opened
a new range of possibilities for research, however, this first approach produced numerous visual
artifacts on top of being computationally expensive. Years later,further developments by Wu et
al. (2012) introduced a novel Eulerian approach to magnification that produced much cleaner
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results with less computational cost, paving the way for newer and more refined algorithms
that produced increasingly better results such as (Wadhwa et al., 2014), (Oh et al., 2018) or
(Lado-Roigé & Pérez, 2023).

Statement of need
ViMag provides an easy-to-use graphical user interface aimed at extracting time-series signals
of vibrating machinery and structure videos. This software enables the visualization of videos,
selection of magnification area, and signal processing. Consequently, it facilitates and automates
the technique developed by Lado-Roigé et al. (2022) and allows machine learning layman to
obtain reliable results without having to apply a manual multistage image processing pipeline.
Therefore, this software facilitates the use of a camera as a functional replacement for an
accelerometer by employing STB-VMM as the motion magnification backend.

The intended use of ViMag is to support the assessment of mechanical systems’ performance,
such as machines or structures. Researchers and engineers should consider employing condition
monitoring or SHM methodologies on the outcomes yielded by ViMag. Such techniques are
defined as the set of analysis and assessment tools applied to autonomously determine the
integrity and durability of engineering structures. These techniques are aimed at tracking the
operational status, assessing the condition, and alerting to the changes in the geometric or
material properties that can affect a structure’s overall performance, safety, reliability, and
operational life (Cosenza & Manfredi, 2000; Frangopol & Curley, 1987).

However, the use for ViMag might not be constrained to mechanical engineering exclusively,
and some other interesting applications could also benefit from the software, such as medical
applications (Janatka et al., 2020) or miscellaneous technical demos like recovering sound from
video (Davis et al., 2014).

Video processing workflow
Figure 1 presents a graph depicting the process of converting a video sequence to a discrete
signal. To begin the signal extraction process, the user is asked to select a linear region of
interest, preferably on a high-contrast area of the frame. Then, the area surrounding the
selected region of interest is magnified using STB-VMM throughout the target video sequence’s
length. The motion-magnified result is then converted into a single image that represents
movement in the temporal domain, achieved by extracting the selected linear region in each of
the frames and stacking them horizontally as shown in Figure 2. Finally, an edge detection
algorithm is run over the temporal slice to determine the discrete temporal signal and convert
it into an array of values over time. From this point on, existing signal processing techniques,
such as the Fourier transform, can be used to extract further information.
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Figure 2: Video sequence transformation to temporal slice

Motion magnification acts like a microscope for motion, magnifying tiny movements on video
sequences to retrieve seemingly invisible or almost imperceptible movements. Consequently,
motion magnification may allow the naked eye to see a structure’s operating deflection shapes
as they happened in real operating conditions. The STB-VMM model consists of three main
functional blocks that extract features from frames, manipulate those features and finally
reconstruct the frames. Implemented in PyTorch (Paszke et al., 2019), STB-VMM borrows
ideas from Dosovitskiy et al. (2020), Vaswani et al. (2017), and Z. Liu et al. (2021) to
improve the image quality offered by prior motion magnification methods at the cost of some
performance. The lack of temporal filtering and the higher image quality offered by STB-VMM
play an important role in applications that require precise magnification for vibration monitoring,
as less-noisy images produce clearer signals that highlight abnormal behaviors sooner.
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