DOI: 10.21105/joss.05494

Software
= Review &7
= Repository @
= Archive &0

Editor: Martin Fleischmann 7
Reviewers:
= @malmans2

= @platipodium

Submitted: 01 May 2023
Published: 09 August 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

The Journal of Open Source Software

nctoolkit: A Python package for netCDF analysis and
post-processing

Robert J. Wilson © 1Y and Yuri Artioli ©®1

1 Plymouth Marine Laboratory, The Hoe, Plymouth, UK § Corresponding author

Summary

nctoolkit is a Python package for the analysis and post-processing of netCDF files. It provides
a simple, intuitive interface, and includes methods for common tasks such as subsetting,
regridding, statistical analysis and plotting. The package is designed to be easy to use, and
to require minimal code for performing common tasks. It is built on top of the Climate
Data Operators (CDO) library (Schulzweida, 2022), which provides a powerful data model for
working with multidimensional data. The core aim of the package is to provide over 80% of
the typical data processing requirements for climate, marine and atmospheric scientists who
work with netCDF data.

Statement of need

netCDF is a file format for storing multidimensional data, and it is the fundamental storage
unit for most modelling and large-scale observational work carried out in climate, marine
and atmospheric science. Files typically represent spatiotemporal data, such as atmospheric
or oceanic temperatures. In contrast to other data formats, such as csv, netCDF files are
self-describing and typically follow universally agreed conventions for coordinate names and file
structure etc. As a result, it is possible to write software that can work with almost all netCDF
files that follow these conventions, and there is no automatic need to burden users with the
task of identifying the names given to coordinates, such as time, within the files themselves.
Software can therefore be written that will carry out operations, such as calculating spatial
averages, in one line of code that might otherwise require users to write multiple lines of code,
and for these operations to largely work on any netCDF file.

The scale of netCDF data in use by scientists continues to grow rapidly. For example, the
Coupled Model Intercomparison Project Phase 6 (O'Neill et al., 2016), produced approximately
20 petabytes of publicly available climate model data (Petrie et al., 2021). This accumulation
of data offers great opportunities to environmental scientists. However, it also poses challenges
because analysis software is often difficult to use by non-specialists (Bates et al., 2018) or is
inadequate. nctoolkit is a Python package that aims to fill critical gaps in the current netCDF
software ecosystem. It provides a clean interface for working with netCDF files, and it has a
particular focus in ensuring the compatibility of methods with oceanic model output, which
often have irregular vertical grids.

The nctoolkit package sits within a Python ecosystem of packages such as xarray and iris,
which provide data models and analysis software for netCDF, and netCDF4 which provides low
level access to netCDF data. This ecosystem also includes specialist software such as xesmf
for processes such as regridding and cf-xarray which makes xarray more format-agnostic. In
contrast to other netCDF libraries, the use of CDO as a back-end allows nctoolkit users to
carry out operations, such as spatial averages, without having to specify the specific names of

Wilson, & Artioli. (2023). nctoolkit: A Python package for netCDF analysis and post-processing. Journal of Open Source Software, 8(88), 5494. 1
https://doi.org/10.21105/joss.05494.


https://orcid.org/0000-0002-0592-366X
https://orcid.org/0000-0002-5498-4223
https://doi.org/10.21105/joss.05494
https://github.com/openjournals/joss-reviews/issues/5494
https://github.com/pmlmodelling/nctoolkit
https://doi.org/10.5281/zenodo.8183367
https://martinfleischmann.net
https://orcid.org/0000-0003-3319-3366
https://github.com/malmans2
https://github.com/platipodium
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05494

The Journal of Open Source Software

coordinates, such as longitude, latitude and time, which enables code written for one dataset
to be easily applied to another.

Overview of Functionality

nctoolkit's core object is a Dataset, which is made up of netCDF files stored in a temporary
location. Methods use the CDO library to perform operations on a Dataset, and they modify
a Dataset instead of returning a new object. Evaluation is lazy by default. This means
that methods are only evaluated when necessary or when forced, which significantly improves
performance. To ensure full functionality of nctoolkit, it is preferable that files follow the CF
conventions (Hassell et al., 2017).

The package's core functionality includes the following Dataset methods: regridding (regrid
and to_latlon), subsetting (subset), temporal statistics (tmean, tmax etc.), spatial sta-
tistics (spatial_mean, spatial_max etc.), vertical statistics and methods (vertical_mean,
vertical_interp), plotting (plot, pub_plot), anomaly calculation (annual_anomaly), math-
ematical operations (assign) and ensemble statistics (ensemble_mean etc.). The package also
includes a range of methods for common tasks, including calculating the difference between
one Dataset and another (ds1-ds2), extracting the top and bottom layers of a Dataset (top
and bottom), and calculating the rolling mean (rolling_mean). The package also makes it
easy to match gridded netCDF data to point observation data using the match_points method.
A Dataset can use multiple files as input, and the multiprocessing package is used internally
by nctoolkit to enable easy parallelization of operations on multiple files.

Example Use Case

This example shows how to calculate how much a climate model projects global surface
temperatures to change. The example is from the climate model MPI-ESM-2-LR (Mauritsen
et al., 2019) under the SSP5 8.5 climate change scenario, and we use the rlilplfl variant.
This data is downloadable from the Earth System Grid Federation and is made available on
Zenodo: 10.5281/zenodo.8182678.

We will show how to map projected changes in temperature between 1850-69 and 2080-99 and
also how to calculate a time series of global average temperature change. The data is stored in
multiple netCDF files, which are opened using the open_data function. This returns a Dataset
object, which contains the data and metadata from the netCDF file. The Dataset object has
a number of methods for working with the data, which can be used for manipulation and
analysis. In this example, we first merge the data along the time dimension. We then use the
annual_anomaly method to calculate how much temperature will change in each model grid
cell. The end of this time series, i.e., the change for 2080-99 is then mapped using pub_plot.
Finally, we calculate the global average temperature change using the spatial_mean method
and plot the time series using plot.

import nctoolkit as nc

ds_ts = nc.open_data("*.nc")

ds_ts.merge("time")

ds_ts.annual_anomaly(baseline = [1850, 1869], window = 20)
ds_end = ds_ts.copy()

ds_end.subset(time = -1)

Wilson, & Artioli. (2023). nctoolkit: A Python package for netCDF analysis and post-processing. Journal of Open Source Software, 8(88), 5494. 2
https://doi.org/10.21105/joss.05494.


https://zenodo.org/record/8182678
https://doi.org/10.21105/joss.05494

SS

The Journal of Open Source Software

ds_end.pub_plot()

ds_global = ds_ts.copy()

ds_global.spatial_mean()

ds_global.plot()

Near-surface air temperature (K}

valle
A

time

Figure 1: Projected changes in air temperature from the MPI-ESM-2-LR climate model under the SSP5
8.5 scenario. a) shows changes in the 20-year average between 1850-69 and 2080-99 in each model grid
cell; and b) shows projected change in global average air temperature compared with 1850-69 using a
rolling 20-year average.

Development Notes

nctoolkit is developed on GitHub as an open-source package, and the authors welcome
contributions and feature suggestions. We ensure the code’s quality with an extensive suite
of tests using the pytest package. Continuous Integration testing is carried out using GitHub
Actions for both Linux and macOS. The package is tested on Python 3.8, 3.9, 3.10 and 3.11.
It is available on PyPl and conda-forge for Linux and macOS, and can be installed using pip,
conda and mamba. The package is documented using Sphinx, and the documentation is
hosted on Read the Docs. It is licensed under the GPL-3.0 license.

Acknowledgements

This work was supported by the Natural Environment Research Council (NERC) Climate
Linked Atlantic Sector Science programme (NE/R015953/1). We thank the authors of the
Climate Data Operators (CDO) library for their work. In addition, nctoolkit makes use of

Wilson, & Artioli. (2023). nctoolkit: A Python package for netCDF analysis and post-processing. Journal of Open Source Software, 8(88), 5494. 3
https://doi.org/10.21105/joss.05494.


https://doi.org/10.21105/joss.05494

The Journal of Open Source Software

xarray (Hoyer & Hamman, 2017), pandas (McKinney, 2011), holoviews (Stevens et al., 2015)
and matplotlib (Hunter, 2007) for the core plotting functionality. We acknowledge the World
Climate Research Programme, which, through its Working Group on Coupled Modelling,
coordinated and promoted CMIP6.

References

Bates, A. E., Helmuth, B., Burrows, M. T., Duncan, M. I., Garrabou, J., Guy-Haim, T., Lima,
F., Queiros, A. M., Seabra, R., Marsh, R., Belmaker, J., Bensoussan, N., Dong, Y., Mazaris,
A. D., Smale, D., Wahl, M., & Rilov, G. (2018). Biologists ignore ocean weather at their
peril. Nature, 560, 299-301. https://doi.org/10.1038/d41586-018-05869-5

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., & Taylor, K. E. (2017). A data model of
the Climate and Forecast metadata conventions (CF-1.6) with a software implementation
(cf-python v2.1). Geoscientific Model Development, 10, 4619-4646. https://doi.org/10.
5194 /gmd-10-4619-2017

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal
of Open Research Software, 5, 10. https://doi.org/10.5334 /jors.148

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9, 90-95. https://doi.org/10.1109/MCSE.2007.55

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V.,
Claussen, M., Crueger, T., & Esch, M. et al. (2019). Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and lts Response to Increasing CO,.
Journal of Advances in Modeling Earth Systems, 11, 998-1038. https://doi.org/10.1029/
2018MS001400

McKinney, W. (2011). pandas: a foundational Python library for data analysis and statistics.
Python for High Performance and Scientific Computing, 14, 1-9.

O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G.,
Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., &
Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP)
for CMIP6. Geoscientific Model Development, 9, 3461-3482. https://doi.org/10.5194/
gmd-9-3461-2016

Petrie, R., Denvil, S., Ames, S., Levavasseur, G., Fiore, S., Allen, C., Antonio, F., Berger,
K., Bretonniére, P.-A., Cinquini, L., Dart, E., Dwarakanath, P., Druken, K., Evans, B.,
Franchistéguy, L., Gardoll, S., Gerbier, E., Greenslade, M., Hassell, D., .. Wagner, R. (2021).
Coordinating an operational data distribution network for CMIP6 data. Geoscientific Model
Development, 14, 629-644. https://doi.org/10.5194/gmd-14-629-2021

Schulzweida, U. (2022). CDO User Guide (Version 2.1.0). Zenodo. https://doi.org/10.5281/
zenodo.7112925

Stevens, J.-L., Rudiger, P., & Bednar, J. (2015). HoloViews: Building Complex Visualizations
Easily for Reproducible Science. Proceedings of the 14th Python in Science Conference,
59-66. https://doi.org/10.25080/majora-7b98e3ed-00a

Wilson, & Artioli. (2023). nctoolkit: A Python package for netCDF analysis and post-processing. Journal of Open Source Software, 8(88), 5494. 4
https://doi.org/10.21105/joss.05494.


https://doi.org/10.1038/d41586-018-05869-5
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1029/2018MS001400
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-14-629-2021
https://doi.org/10.5281/zenodo.7112925
https://doi.org/10.5281/zenodo.7112925
https://doi.org/10.25080/majora-7b98e3ed-00a
https://doi.org/10.21105/joss.05494

	Summary
	Statement of need
	Overview of Functionality
	Example Use Case
	Development Notes
	Acknowledgements
	References

