
PyAMG: Algebraic Multigrid Solvers in Python
Nathan Bell1, Luke N. Olson 2, Jacob Schroder 3, and Ben Southworth 4

1 Google, Mountain View, CA, USA 2 Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL USA 61801 3 Department of Mathematics and Statistics, University of
New Mexico, Albuquerque, NM USA 87131 4 Los Alamos National Laboratory, Los Alamos, NM USA
87545

DOI: 10.21105/joss.05495

Software
• Review
• Repository
• Archive

Editor: Jed Brown
Reviewers:

• @mayrmt
• @Jeff-Hadley
• @victorapm

Submitted: 05 May 2023
Published: 04 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of need
PyAMG is a Python package of algebraic multigrid (AMG) solvers and supporting tools for
approximating the solution to large, sparse linear systems of algebraic equations,

𝐴𝑥 = 𝑏,

where 𝐴 is an 𝑛 × 𝑛 sparse matrix. Sparse linear systems arise in a range of problems in
science, from fluid flows to solid mechanics to data analysis. While the direct solvers available
in SciPy’s sparse linear algebra package (scipy.sparse.linalg) are highly efficient, in many
cases iterative methods are preferred due to overall complexity. However, the iterative methods
in SciPy, such as CG and GMRES, often require an efficient preconditioner in order to achieve
a lower complexity. Preconditioning is a powerful tool whereby the conditioning of the linear
system and convergence rate of the iterative method are both dramatically improved. PyAMG

constructs multigrid solvers for use as a preconditioner in this setting. A summary of multigrid
and algebraic multigrid solvers can be found in Olson (2015a), in Olson (2015b), and in
Falgout (2006); a detailed description can be found in Briggs et al. (2000) and Trottenberg et
al. (2001). PyAMG provides a comprehensive suite of AMG solvers (see Methods), which is
beneficial because many AMG solvers are specialized for particular problem types.

Summary
The overarching goals of PyAMG include both readability and performance. This includes
readable implementations of many popular variations of AMG (see the Methods section), the
ability to reproduce results in the literature, and a user-friendly interface to AMG allowing
straightforward access to the variety of AMG parameters in the method(s). Additionally,
pure Python implementations are not efficient for many sparse matrix operations not already
available in scipy.sparse — e.g., the sparse matrix graph coarsening algorithms needed
by AMG. For such cases in PyAMG, the compute (or memory) intensive kernels are typically
expressed in C++ and wrapped through PyBind11, while the method interface and error
handling is implemented directly in Python (more in the next section).

In the end, the goal of PyAMG is to provide quick access, rapid prototyping of new AMG
solvers, including easy comparison with many existing variations of AMG in the literature, and
performant execution of AMG methods. The extensive PyAMG Examples page highlights
many of the package’s advanced AMG capabilities, e.g., for Hermitian, complex, nonsymmetric,
and other challenging system types. It is important to note that many other AMG packages
exist, mainly with a focus on parallelism and performance, rather than quick access and rapid
prototyping. This includes BoomerAMG in hypre (Henson & Yang, 2002; hypre, 2022), MueLu
in Trilinos (MueLu Project Team, 2020; Trilinos Project Team, 2020), and GAMG within
PETSc (Balay et al., 2021), along with other packages focused on accelerators (Bell et al.,

Bell et al. (2023). PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.21105/joss.
05495.

1

https://orcid.org/0000-0002-5283-6104
https://orcid.org/0000-0002-1076-9206
https://orcid.org/0000-0002-0283-4928
https://doi.org/10.21105/joss.05495
https://github.com/openjournals/joss-reviews/issues/5495
https://github.com/pyamg/pyamg
https://doi.org/10.5281/zenodo.8109414
https://jedbrown.org
https://orcid.org/0000-0002-9945-0639
https://github.com/mayrmt
https://github.com/Jeff-Hadley
https://github.com/victorapm
https://creativecommons.org/licenses/by/4.0/
https://github.com/pyamg/pyamg-examples
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495


2012), such as AmgX (Naumov et al., 2015), CUSP (Dalton et al., 2014), and AMGCL
(Demidov, 2019).

Design
The central data model in PyAMG is that of a MultiLevel object, which is constructed in the
setup phase of AMG. The multigrid hierarchy is expressed in this object (details below) along
with information for the solve phase, which can be executed on various input data, 𝑏, to solve
𝐴𝑥 = 𝑏.

The MultiLevel object consists of a list of multigrid Level objects and diagnostic information.
For example, a MultiLevel object named ml contains the list ml.levels. Then, the data on
level i (with the finest level denoted i=0) accessible in ml.levels[i] includes the following
information:

• A: the sparse matrix operator, in CSR or BSR format, on level i;
• P: a sparse matrix interpolation operator to transfer grid vectors from level i+1 to i;
• R: a sparse matrix restriction operator to transfer grid vectors from level i to i+1; and
• presmoother, postsmoother: functions that implement pre/post-relaxation in the solve

phase, such as weighted Jacobi or Gauss-Seidel.

Other data may be retained for additional diagnostics, such as grid splitting information,
aggregation information, etc., and would be included in each level.

Specific multigrid methods (next section) in PyAMG and their parameters are generally described
and constructed in Python, while key performance components of both the setup and solve
phase are written in C++. Heavy looping that cannot be accomplished with vectorized or
efficient calls to NumPy or sparse matrix operations that are not readily expressed as SciPy
sparse (CSR or CSC) operations are contained in short, templated C++ functions. The
templates are used to avoid type recasting the variety of input arrays. The direct wrapping to
Python is handled through another layer with PyBind11. Roughly 26% of PyAMG is in C++,
with the rest in Python.

Methods
PyAMG implements among the most wide-ranging suites of base AMG methods, each with a
range of options. The base forms for a solver include

• ruge_stuben_solver(): the classical form of C/F-type AMG (Ruge & Stüben, 1987);
• smoothed_aggregation_solver(): smoothed aggregation based AMG as introduced in

(Vaněk et al., 1996);
• pairwise_solver(): pairwise (unsmoothed) aggregation based AMG as introduced in

(Notay, 2010);
• adaptive_sa_solver(): a so-called adaptive form of smoothed aggregation from (Brez-

ina et al., 2005); and
• rootnode_solver(): the root-node AMG method from (Thomas A. Manteuffel et al.,

2017), applicable also to some nonsymmetric systems.
• air_solver(): the nonsymmetric AMG method based on approximate ideal restriction

(AIR) from (Thomas A. Manteuffel et al., 2018, 2019), which is highly effective for many
upwind discretizations of advection-dominated problems.

In each of these, the base algorithm is available but defaults may be modified for robustness.
Options such as the default pre/postsmoother or smoothing the input candidate vectors (in
the case of smoothed aggregation or root-node AMG), can be modified to tune the solver. In
addition, several cycles are available, including the standard V, F, and W cycles, for the solve
phase. The resulting method can also be used as a preconditioner within the Krylov methods

Bell et al. (2023). PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.21105/joss.
05495.

2

https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495


available in PyAMG or with SciPy’s Krylov methods. The methods in PyAMG generally support
complex data types and nonsymmetric matrices. All MultiLevel objects provide a detailed
measure of the grid complexity (number of unknowns on all levels / number of unknowns on
the finest level), operator complexity (number of nonzeros in the matrix on all levels / number
of nonzeros in the matrix on the finest level), and cycle complexity (approximate cost in
floating point operations (FLOPs) of a single multigrid cycle relative to a single matrix-vector
multiply).

Example
As an example, consider a five-point finite difference approximation to a Poisson problem,
−Δ𝑢 = 𝑓, given in matrix form as 𝐴𝑥 = 𝑏. The AMG setup phase is called with

1 import pyamg

2 A = pyamg.gallery.poisson((1000,1000), format='csr')

3 ml = pyamg.smoothed_aggregation_solver(A, max_coarse=10)

For this case, with 1M unknowns, the following multilevel hierarchy is generated for smoothed
aggregation (using print(ml)):

MultilevelSolver

Number of Levels: 7

Operator Complexity: 1.338

Grid Complexity: 1.188

Coarse Solver: 'pinv'

level unknowns nonzeros

0 1000000 4996000 [74.75%]

1 167000 1499328 [22.43%]

2 18579 167051 [2.50%]

3 2086 18870 [0.28%]

4 233 2109 [0.03%]

5 28 248 [0.00%]

6 3 9 [0.00%]

In this case, the hierarchy consists of seven levels, with SciPy’s pseudoinverse (pinv) being
used on the coarsest level. Also displayed is the ratio of unknowns (nonzeros) on all levels
compared to the fine level, also known as the grid (operator) complexity.

The solve phase, using standard V-cycles, is executed with the object’s solve:

1 import numpy as np

2 x0 = np.random.rand(A.shape[0])

3 b = np.zeros(A.shape[0])

4 res = []

5 x = ml.solve(b, x0, tol=1e-10, residuals=res)

This leads to the residual history shown in Figure 1. Additional examples can be found
at github.com/pyamg/pyamg-examples, including examples with classical AMG using AIR,
building solvers with rootnode, and nonsymmetric use cases.

Bell et al. (2023). PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.21105/joss.
05495.

3

https://github.com/pyamg/pyamg-examples
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495


0 5 10 15 20 25
V-cycle iterations

104

102

100

10-2

10-4

10-6

10-8

10-10

re
sid

ua
l

Figure 1: Algebraic multigrid convergence (relative residual).

References
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K.,

Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Hapla, V., Isaac,
T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., … Zhang, J. (2021).
PETSc Web page. https://petsc.org/

Bell, N., Dalton, S., & Olson, L. N. (2012). Exposing fine-grained parallelism in algebraic
multigrid methods. SIAM Journal on Scientific Computing, 34(4), C123–C152. https:
//doi.org/10.1137/110838844

Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., & Ruge, J.
(2005). Adaptive smoothed aggregation (𝛼 SA) multigrid. SIAM Review, 47 (2), 317–346.
https://doi.org/10.1137/050626272

Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A multigrid tutorial (Second).
Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719505

Dalton, S., Bell, N., Olson, L., & Garland, M. (2014). Cusp: Generic parallel algorithms for
sparse matrix and graph computations. http://cusplibrary.github.io/

Demidov, D. (2019). AMGCL: An efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii Journal of Mathematics, 40(5), 535–546. https://doi.org/
10.1134/s1995080219050056

Falgout, R. D. (2006). An introduction to algebraic multigrid. Computing in Science &
Engineering, 8(6), 24–33. https://doi.org/10.1109/MCSE.2006.105

Henson, V. E., & Yang, U. M. (2002). BoomerAMG: A parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics, 41(1), 155–177. https://doi.org/10.
1016/S0168-9274(01)00115-5

hypre. (2022). High performance preconditioners. https://github.com/hypre-space/hypre

Manteuffel, Thomas A., Münzenmaier, S., Ruge, J., & Southworth, B. (2019). Nonsymmet-
ric reduction-based algebraic multigrid. SIAM Journal on Scientific Computing, 41(5),
S242–S268. https://doi.org/10.1137/18M1193761

Manteuffel, Thomas A., Olson, L. N., Schroder, J. B., & Southworth, B. S. (2017). A root-
node–based algebraic multigrid method. SIAM Journal on Scientific Computing, 39(5),
S723–S756. https://doi.org/10.1137/16M1082706

Manteuffel, Thomas A., Ruge, J., & Southworth, B. S. (2018). Nonsymmetric algebraic
multigrid based on local approximate ideal restriction (ℓ AIR). SIAM Journal on Scientific

Bell et al. (2023). PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.21105/joss.
05495.

4

https://petsc.org/
https://doi.org/10.1137/110838844
https://doi.org/10.1137/110838844
https://doi.org/10.1137/050626272
https://doi.org/10.1137/1.9780898719505
http://cusplibrary.github.io/
https://doi.org/10.1134/s1995080219050056
https://doi.org/10.1134/s1995080219050056
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://github.com/hypre-space/hypre
https://doi.org/10.1137/18M1193761
https://doi.org/10.1137/16M1082706
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495


Computing, 40(6), A4105–A4130. https://doi.org/10.1137/17M1144350

MueLu Project Team. (2020). MueLu Project website. https://trilinos.github.io/muelu.html

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S.,
Markovskiy, N., Reguly, I., Sakharnykh, N., Sellappan, V., & Strzodka, R. (2015). AmgX: A
library for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM
Journal on Scientific Computing, 37 (5), S602–S626. https://doi.org/10.1137/140980260

Notay, Y. (2010). An aggregation-based algebraic multigrid method. Electronic Transactions on
Numerical Analysis, 37 (6), 123–146. https://etna.math.kent.edu/vol.37.2010/pp123-146.
dir/pp123-146.html

Olson, L. (2015a). Multigrid methods: algebraic. In B. Engquist (Ed.), Encyclopedia of
applied and computational mathematics (pp. 977–981). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-70529-1_337

Olson, L. (2015b). Multigrid methods: geometric. In B. Engquist (Ed.), Encyclopedia
of applied and computational mathematics (pp. 981–987). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-70529-1_338

Ruge, J. W., & Stüben, K. (1987). Algebraic multigrid (AMG). In S. F. McCormick (Ed.),
Multigrid methods (Vol. 3, pp. 73–130). SIAM. https://doi.org/10.1137/1.9781611971057

Trilinos Project Team. (2020). Trilinos Project website. https://trilinos.github.io

Trottenberg, U., Oosterlee, C. W., & Schüller, A. (2001). Multigrid (p. xvi+631). Academic
Press, Inc., San Diego, CA. ISBN: 0-12-701070-X

Vaněk, P., Mandel, J., & Brezina, M. (1996). Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing, 56(3), 179–196. https://doi.
org/10.1007/BF02238511

Bell et al. (2023). PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software, 8(87), 5495. https://doi.org/10.21105/joss.
05495.

5

https://doi.org/10.1137/17M1144350
https://trilinos.github.io/muelu.html
https://doi.org/10.1137/140980260
https://etna.math.kent.edu/vol.37.2010/pp123-146.dir/pp123-146.html
https://etna.math.kent.edu/vol.37.2010/pp123-146.dir/pp123-146.html
https://doi.org/10.1007/978-3-540-70529-1_337
https://doi.org/10.1007/978-3-540-70529-1_338
https://doi.org/10.1137/1.9781611971057
https://trilinos.github.io
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495

	Statement of need
	Summary
	Design
	Methods
	Example
	References

