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Summary
Independent Component Analysis (ICA) is a widely used algorithm to extract a small number
of mutually independent source signals in high-dimensional data. There are many applications
of ICA in signal processing (Calhoun, 2006; Hyvärinen, 2000), neuroscience (Calhoun, 2006;
Hyvärinen, 2000), bioinformatics (Trapnell, 2014), and causal discovery (Shimizu, 2006).
ICA has been applied to matrix data but there is a growing demand to apply ICA to more
heterogeneous data such as multiple matrices and tensors (high-dimensional arrays), which
are higher-order data structures than matrices (Akaho, 1999; Calhourn, 2009; Pfister, 2018;
Vasilescu, 2005). To meet these requirements, I originally developed iTensor, which is
an R/CRAN package to perform some ICA-based matrix/tensor decomposition algorithms
(https://cran.r-project.org/web/packages/iTensor/index.html).

Statement of need
Currently, the most comprehensive implementation for ICA-related algorithms is the Group ICA
of fMRI Toolbox (GIFT, http://mialab.mrn.org/software/gift), but it is not freely available
because it is implemented in MATLAB. Also, some open-source software is implemented in R
and Python but those only focus on fewer algorithms. To fill this gap, I originally implemented
some ICA-based matrix/tensor decomposition algorithms in R.

iTensor provides the ICA-based matrix/tensor decomposition functions as follows:

• ICA: ICA (3 classic models including InfoMax (Amari, 1995; Bell, 1995), ExtInfoMax
(Lee, 1999), and FastICA (Hyvarinen, 1999))

• ICA2: ICA (9 modern models including JADE (Cardoso, 1993), AuxICA1/2 (Ono, 2010),
SIMBEC (Cruces, 2001), AMUSE (Tong, 1991), SOBI (Belouchrani, 1997), FOBI
(Cardoso, 1989), ProDenICA (Hastie, 2002), and RICA (Le, 2011))

• MICA: Multimodal ICA (Akaho, 1999)
• GroupICA: Group ICA (Calhourn, 2009; Pfister, 2018)
• MultilinearICA: Multilinear ICA (Vasilescu, 2005)

I also implemented CorrIndex (Sobhani, 2022), which is a performance index to evaluate ICA
results.

Example
ICA and plots in Figure 1 can be easily reproduced on any machine where R is pre-installed by
using the following commands in R:
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# Install package required (one per computer)

install.packages("BiocManager")

BiocManager::install(c("mixOmics", "iTensor"))

# Load required package (once per R instance)

library("iTensor")

# Load Toy data

data1 <- toyModel("ICA_Type1")

# Perform ICA

set.seed(1234)

out.JADE <- ICA2(X=data1$X_observed, J=3, algorithm="JADE")

# Source Signal extracted by ICA (If it becomes an upright square,

# the calculation is successful)

pairs(data1$X_observed)

pairs(Re(out.JADE$S))

# CorrIndex (0.2211509, the closer to 0, the better the performance)

CorrIndex(cor(data1$S, Re(out.JADE$S)))

Figure 1: ICA with time-independent sub-gaussian data.

Related work
There are some packages to perform ICA for matrix, matrices, and tensor but such packages
focus on only a few algorithms. iTensor is the most comprehensive and unified package to
perform ICA-based matrix/tensor decomposition as follows.

Table 1: Existing ICA-related packages

Name (function
or package) Language

ICA for
matrix

ICA for
matrices

ICA for
tensor Reference

scikit-learn Python 1 - - Pedregosa
(2011)
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Name (function
or package) Language

ICA for
matrix

ICA for
matrices

ICA for
tensor Reference

MNE Python 1 - - Gramfort
(2013)

rica MATLAB 1 - - Le (2011)
fastICA R 1 - - Hyvarinen

(1999)
fICA R 1 - - Hyvarinen

(1999)
JADE R 1 - - Cardoso

(1993)
ProDenICA R 1 - - Hastie (2002)
ica R 3 - - Calhoun

(2006);
Hyvärinen

(2000)
groupICA R - 1 - Pfister (2018)
coroICA R/Python/MAT-

LAB
- 2 - Pfister (2019)

BrainVoyager MATLAB 1 - - Goebel
(2006);

Formisano
(2006)

FMRLAB MATLAB 1 - - Perlbarg
(2007)

GIFT MATLAB 14 1 - Wei (2022)
tensorBSS R - - 6 Virta (2016)
iTensor R 12 2 1 This paper

For MICA (Akaho, 1999) and Multilinear ICA (Vasilescu, 2005), there is no package without
iTensor to perform them.
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