
qujax: Simulating quantum circuits with JAX
Samuel Duffield 1¶, Gabriel Matos 1,2, and Melf Johannsen1

1 Quantinuum 2 University of Leeds ¶ Corresponding author
DOI: 10.21105/joss.05504

Software
• Review
• Repository
• Archive

Editor: Lucy Whalley
Reviewers:

• @jmiszczak
• @amitkumarj441
• @meandmytram

Submitted: 29 March 2023
Published: 12 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
qujax is a pure JAX (Bradbury et al., 2018), purely functional Python package for the classical
simulation of quantum circuits. A JAX implementation of quantum circuits inherits benefits
such as seamless automatic differentiation, support for GPUs/TPUs as well as integration with
a host of other tools within the JAX ecosystem.

qujax is hosted on PyPI for easy installation and comes with detailed documentation and a
suite of example notebooks.

qujax represents a quantum circuit as a collection of three equal length Python iterables:

• a series of gate identifiers specifying the sequence of quantum gates to be applied to the
qubits as part of the circuit. Each element can be either

– a string referring to a gate in qujax.gates e.g. "Z", "Rx"
– a JAX array representing a unitary matrix
– a function that returns such an array

• a series indicating which qubits in the circuit each gate should be applied to
• a series of indices indicating which entries of a parameter vector (which is provided when

later evaluating the circuit) correspond to parameters of the gate (e.g. rotation gates
such as "Rx" take one parameter).

For example, a valid quantum circuit specification would be the following

qujax.print_circuit(["X", "Rz", "Rz", "CRz"],

[[0], [1], [0], [0, 1]],

[[], [0], [1], [1]])

q0: -----X-----Rz[1]-----◯---

|

q1: ---Rz[0]-----------CRz[1]

Note that for angular parameters, the default parameterised gates in qujax.gates assume
angles are specified in half-turns (i.e. 𝜃 ∈ [0, 2)) as opposed to radians.

Statetensor

In quantum mechanics, a pure state is fully specified by a statevector

|𝜓⟩ =
2𝑁

∑
𝑖=1

𝛼𝑖|𝑖⟩ ∈ ℂ2𝑁 ,

where 𝑁 is the number of qubits and each 𝛼𝑖 is a complex scalar number referred to as the
𝑖th amplitude. Quantum states are also normalised such that ⟨𝜓|𝜓⟩ = ∑2𝑁

𝑖=1 |𝛼𝑖|2 = 1. We
work in the computational basis, where |𝑖⟩ is represented as a vector of zeros with a one in the
𝑖th position (e.g. for 𝑁 = 2, |2⟩ is represented as [0 1 0 0]). In qujax, we represent such
vectors as a statetensor, where a pure state is encoded in a tensor of complex numbers with

Duffield et al. (2023). qujax: Simulating quantum circuits with JAX. Journal of Open Source Software, 8(89), 5504. https://doi.org/10.21105/
joss.05504.

1

https://orcid.org/0000-0002-8656-8734
https://orcid.org/0000-0002-3373-0128
https://doi.org/10.21105/joss.05504
https://github.com/openjournals/joss-reviews/issues/5504
https://github.com/CQCL/qujax
https://doi.org/10.5281/zenodo.8268973
http://lucydot.github.io
https://orcid.org/0000-0002-2992-9871
https://github.com/jmiszczak
https://github.com/amitkumarj441
https://github.com/meandmytram
https://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/qujax/
https://cqcl.github.io/qujax/api/
https://github.com/CQCL/qujax/tree/main/examples
https://doi.org/10.21105/joss.05504
https://doi.org/10.21105/joss.05504

shape (2,) * N. The statetensor representation is convenient for quantum arithmetic (such
as applying gates, tracing out qubits and sampling bitstrings). For example, the amplitude
corresponding to the bitstring [0 1 0 0] can be accessed with statetensor[0, 1, 0, 0].
The statevector can always be obtained by calling statevector = statetensor.flatten().

One can use qujax.get_params_to_statetensor_func to generate a pure JAX function
encoding a parameterised quantum state

|𝜓𝜃⟩ = 𝑈𝜃|𝜙⟩,

where 𝜃 is a parameter vector and |𝜙⟩ is an initial quantum state that can be provided via the
optional argument statetensor_in (that defaults to |0⟩ =[1 0 ... 0]).

Unitarytensor

Alternatively, one can call qujax.get_params_to_unitarytensor_func to get a function re-
turning a tensor representation of the unitary 𝑈𝜃 with shape (2,) * 2 * N.

Densitytensor

The quantum states that can be represented as above are called pure quantum states. More
general quantum states can be represented by using a density matrix. The density matrix
representation of a pure quantum state |𝜓⟩ can be obtained via the outer product 𝜌 = |𝜓⟩⟨𝜓| ∈
ℂ2𝑁×2𝑁 . More generally a density matrix encodes a mixed state

𝜌 = ∑
𝑘

𝑝𝑘|𝜓𝑘⟩⟨𝜓𝑘|,

which can be interpreted as classical statistical mixture of pure states, with 𝑝𝑘 ∈ [0, 1] and
∑𝑘 𝑝𝑘 = 1.

Density matrices are also supported in qujax in the form of densitytensors - complex
tensors of shape (2,) * 2 * N. Similar to the statetensor simulator, parameterised
evolution of a densitytensor can be implemented via general Kraus operations with
qujax.get_params_to_densitytensor_func. Further details on density matrices and Kraus
operators are available in the documentation or published literature (Nielsen & Chuang, 2010,
pp. 98–105).

Expectation values

Expectation values can also be calculated conveniently with qujax. In simple cases,
such as a combinatorial optimisation problems (e.g. MaxCut), this can be done by
extracting measurement probabilities from the statetensor or densitytensor and calcu-
lating the expected value of a cost function directly. For more sophisticated bases,
qujax.get_statetensor_to_expectation_func and
qujax.get_densitytensor_to_expectation_func generate functions that map to the
expected value of a given series of Hermitian tensors. Sampled expectation values (which
replicate so-called shot noise for a given number of shots) are also supported in qujax.

Statement of need
JAX is emerging as a state-of-the-art library for high-perfomance scientific computation in
Python due to its composability, automatic differentiation and support for GPUs/TPUs, as
well as adopting the NumPy (Harris et al., 2020) API resulting in a low barrier to entry.

qujax is a lightweight, purely functional library written entirely in JAX, composing seamlessly
with the ever-expanding JAX ecosystem. It emphasises clarity and readability, making it easy

Duffield et al. (2023). qujax: Simulating quantum circuits with JAX. Journal of Open Source Software, 8(89), 5504. https://doi.org/10.21105/
joss.05504.

2

https://cqcl.github.io/qujax/api/densitytensor.html
https://doi.org/10.21105/joss.05504
https://doi.org/10.21105/joss.05504

to debug, reducing the barrier to entry, and decreasing the overhead when integrating with
existing code or extending it to meet specific research needs.

These characteristics contrast with the already existing array of excellent quantum computation
resources in Python, such as cirq (Cirq Developers, 2022), pytket (Sivarajah et al., 2020),
qiskit (Bradbury et al., 2018), Qulacs (Suzuki et al., 2021), TensorFlow Quantum (Broughton
et al., 2020), DisCoPy (Toumi et al., 2022), Pennylane (Bergholm et al., 2018) or quimb (Gray,
2018), the latter three supporting JAX as a backend. These represent complex full-fledged
frameworks which supply their own abstractions, being either wider in scope or specializing in
specific use-cases. The core difference is that qujax is designed to be purely functional.

While generic circuit simulation is within scope, qujax does not support tensor network
simulation. There is an active area of research investigating this as a tool for classical
simulation of quantum circuits with software including DisCoPy (Toumi et al., 2022), quimb
(Gray, 2018) and TensorCircuit (Zhang et al., 2023). While tensor networks represent a very
promising field of research, their implementation entails a more sophisticated API (in tensor
networks, the representation of a quantum state can be considerably more elaborate), greatly
increasing the complexity of the package. Thus, tensor network computation is currently seen
as being beyond the scope of qujax.

pytket-qujax

qujax is accompanied by an extension package pytket-qujax supporting easy conversion
to and from pytket.Circuit objects, thus providing a convenient bridge between pytket
and JAX ecosystems. It possible to use the other pytket extensions to convert from and to
qiskit (Bradbury et al., 2018), Qulacs (Suzuki et al., 2021), cirq (Cirq Developers, 2022) and
Pennylane (Bergholm et al., 2018) as well.

Acknowledgements
We acknowledge notable support from Kirill Plekhanov as well as Gabriel Marin, Enrico Rinaldi
and Richie Yeung.

References
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso-

Linaje, G., AkashNarayanan, B., Asadi, A., Arrazola, J. M., Azad, U., Banning, S., Blank,
C., Bromley, T. R., Cordier, B. A., Ceroni, J., Delgado, A., Di Matteo, O., … Killoran, N.
(2018). PennyLane: Automatic differentiation of hybrid quantum-classical computations.
arXiv. https://doi.org/10.48550/ARXIV.1811.04968

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Broughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H., Isakov, S. V., Massey,
P., Halavati, R., Niu, M. Y., Zlokapa, A., Peters, E., Lockwood, O., Skolik, A., Jerbi,
S., Dunjko, V., Leib, M., Streif, M., Von Dollen, D., Chen, H., … Mohseni, M. (2020).
TensorFlow quantum: A software framework for quantum machine learning. arXiv. https:
//doi.org/10.48550/ARXIV.2003.02989

Cirq Developers. (2022). Cirq (Version v1.1.0). Zenodo. https://doi.org/10.5281/zenodo.
7465577

Duffield et al. (2023). qujax: Simulating quantum circuits with JAX. Journal of Open Source Software, 8(89), 5504. https://doi.org/10.21105/
joss.05504.

3

https://doi.org/10.48550/ARXIV.1811.04968
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/ARXIV.2003.02989
https://doi.org/10.48550/ARXIV.2003.02989
https://doi.org/10.5281/zenodo.7465577
https://doi.org/10.5281/zenodo.7465577
https://doi.org/10.21105/joss.05504
https://doi.org/10.21105/joss.05504

Gray, J. (2018). Quimb: A python package for quantum information and many-body calcula-
tions. Journal of Open Source Software, 3(29), 819. https://doi.org/10.21105/joss.00819

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum informa-
tion: 10th anniversary edition. Cambridge University Press. https://doi.org/10.1017/
CBO9780511976667

Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., & Duncan, R. (2020).
T|ket�: A retargetable compiler for NISQ devices. Quantum Science and Technology, 6(1),
014003. https://doi.org/10.1088/2058-9565/ab8e92

Suzuki, Y., Kawase, Y., Masumura, Y., Hiraga, Y., Nakadai, M., Chen, J., Nakanishi, K. M.,
Mitarai, K., Imai, R., Tamiya, S., Yamamoto, T., Yan, T., Kawakubo, T., Nakagawa, Y.
O., Ibe, Y., Zhang, Y., Yamashita, H., Yoshimura, H., Hayashi, A., & Fujii, K. (2021).
Qulacs: A fast and versatile quantum circuit simulator for research purpose. Quantum, 5,
559. https://doi.org/10.22331/q-2021-10-06-559

Toumi, A., Felice, G. de, & Yeung, R. (2022). DisCoPy for the quantum computer scientist.
arXiv. https://doi.org/10.48550/ARXIV.2205.05190

Zhang, S.-X., Allcock, J., Wan, Z.-Q., Liu, S., Sun, J., Yu, H., Yang, X.-H., Qiu, J., Ye, Z.,
Chen, Y.-Q., Lee, C.-K., Zheng, Y.-C., Jian, S.-K., Yao, H., Hsieh, C.-Y., & Zhang, S.
(2023). TensorCircuit: A Quantum Software Framework for the NISQ Era. Quantum, 7,
912. https://doi.org/10.22331/q-2023-02-02-912

Duffield et al. (2023). qujax: Simulating quantum circuits with JAX. Journal of Open Source Software, 8(89), 5504. https://doi.org/10.21105/
joss.05504.

4

https://doi.org/10.21105/joss.00819
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.48550/ARXIV.2205.05190
https://doi.org/10.22331/q-2023-02-02-912
https://doi.org/10.21105/joss.05504
https://doi.org/10.21105/joss.05504

	Summary
	Statetensor
	Unitarytensor
	Densitytensor
	Expectation values

	Statement of need
	pytket-qujax
	Acknowledgements
	References

