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Summary

We present molearn, a Python package streamlining the implementation of machine learning
models dedicated to the generation of protein conformations from example data obtained via
experiment or molecular simulation.

Statement of need

Most biological mechanisms directly involve proteins. The specific task each of these biopoly-
mers carries out is linked to their three-dimensional shape, enabling them to bind to designated
binding partners such as small molecules, ions, or other biopolymers. Crucially though, biomol-
ecules are flexible and so are continuously jostling and reconfiguring due to Brownian motion.
Thus, their function emerges from characteristic conformational dynamics. Characterising the
structure and dynamics of biomolecules at the atomic level provides us with a fundamental
understanding of the mechanisms underpinning life and is the first step in numerous tech-
nological applications. Progress in these areas has been spearheaded by the development
of a diverse palette of dedicated experimental techniques (Dobson, 2019). Unfortunately,
none is singlehandedly capable of routinely reporting on the full fine structure of biomolecular
conformational spaces. As such, our understanding of life at the molecular level is inherently
biased by the techniques we adopt to observe it (Marsh & Teichmann, 2015). Molecular
dynamics (MD) simulations yield atomistic insights into the conformational landscape of
biomolecules, complementing and extending data gathered experimentally. MD simulations
estimate the true conformational landscape of biomolecules by iteratively generating new
conformers based on an initial, known atomic arrangement and physical models of atomic
interactions. While MD enables obtaining key insight into biomolecular function, it is not a
silver bullet: exhaustive sampling of processes such as folding or ligand binding usually lay
beyond what can be routinely observed.

Generative Neural Networks have been shown to be effective predictors of a protein’s 3D
structure from its sequence (Baek et al., 2021; Jumper et al., 2021). Several efforts have
also demonstrated that a neural network trained with MD conformers can learn a meaningful
dimensionality reduction of the data, usable for reaction coordinate definition (Chen et al.,
2018; Frassek et al., 2021), or driving conformational space sampling (Mehdi et al., 2022;
Noé et al., 2019; Sidky et al., 2020). In this context, we have previously presented generative
neural networks capable of producing protein conformations based on small pools of examples
produced by MD (Degiacomi, 2019; Ramaswamy et al., 2021). The issue is that developing a
Machine Learning model to study biomolecular dynamics is a lengthy process. This requires
setting up means of transforming conformational space data into tensor data submittable to a
model, as well as assessing a model's quality (e.g., in terms of their energy or according to
structural descriptors).

Here we present molearn, a Python framework facilitating the implementation of generative
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neural networks learning protein conformational spaces from examples obtained via experiments
or MD simulations.

Package Description

Classes available provide support for the following tasks:

= Data loading. molearn provides methods to parse molecular conformers using biobox
(Rudden et al., 2022), and convert them into a PyTorch (Paszke et al., 2019) tensor
format suitable for training.

= Model design. molearn comes with a range of pre-implemented models, ready to be
trained on any desired datasets or subclassed to create custom models.

= Loss function definition. While the classical loss function in a generative model typically
builds upon a mean square error between input and output, here we provide the capability
of directly interacting with the OpenMM molecular dynamics engine (Eastman et al.,
2017). Specifically, we have implemented means of transferring PyTorch Tensor data
directly into OpenMM'’s backend on GPU (without data transfer via the CPU). This
enables quickly evaluating the energy of a generated model according to any force field
accepted by OpenMM. This also enables directly running MD simulations with generated
conformers while the model trains.

= Model analysis. Once a model is trained, it is important to gather metrics defining the
quality of the protein structures it can generate. We provide tools to quickly quantify
structure quality in terms of root mean square deviation between the coordinates of
atoms in input and output, DOPE score (Shen & Sali, 2006), Ramachandran plot, and
user-defined functions. Analysis data is returned in the form of numpy arrays (Harris
et al., 2020), for ease of manipulation and plotting. We also provide a graphical user
interface (GUI), enabling the visualisation of neural network latent space, and generation
of interpolations between states visualised in an interactive 3D panel by a combination
of MDAnalysis (Michaud-Agrawal et al., 2011) and NGLview (Nguyen et al., 2018).
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Figure 1: molearn analysis tools include a graphical user interface, enabling the on-demand generation of
protein conformations. The panel on the left controls how the neural network latent space is presented,
the central panel is a Plotly interactive graph displaying the latent space, and the panel on the right is a
3D representation of an interpolation through the latent space supported by NGLview.

Usage

molearn comes with a series of examples, usable as-is, to train and analyse a neural network.
Tutorials on neural network analysis are also available, including a GUI to directly interact
with a trained neural network Figure 1. Results obtainable via molearn are exemplified in
(Ramaswamy et al., 2021). There, we designed and trained a 1D convolutional autoencoder
against protein molecular dynamics simulation data. The neural network was trained via a loss
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function directing the neural network to both faithfully reconstruct training data, and produce
low-energy interpolations between them, whereby the internal energy of produced models is
assessed according to the Amber ff14SB force field (Maier et al., 2015).
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