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Introduction
Microbially-produced metabolites and microbiome metabolism in general are strongly linked
to ecosystem-level phenotypes, including the health of the human host (Bar et al., 2020;
Villanueva-Millán et al., 2015). To aid in the study of microbial metabolism from observational,
human-derived data, a variety of computational methods that predict microbial community
metabolic output from microbial abundances have been developed (Baldini et al., 2019; Diener
et al., 2020; Mallick et al., 2019; Noecker et al., 2022). Several of these methods rely on
community-scale metabolic models, which are mechanistic, knowledge-based models that
enable the formulation and in silico testing of biological hypotheses regarding the metabolism
of microbial communities (Baldini et al., 2019; Diener et al., 2020). Community-scale models
primarily use Flux Balance Analysis, a technique that infers the metabolic fluxes in a system by
optimizing an objective function, typically growth rate, subject to an assumption of a steady
state and constraints imposed by the metabolic reactions present in the system (Orth et al.,
2010). These metabolic reactions are obtained from genome-scale metabolic networks (GEMs),
knowledge-based computational models encompassing the known biochemical reactions present
within an organism (Thiele & Palsson, 2010). In recent years, curated GEMs for thousands of
human-associated microbial organisms have become increasingly available, enabling a more
in-depth exploration of the human microbiome (Heinken et al., 2023; Machado et al., 2018;
Norsigian et al., 2020). In addition, several community-scale metabolic modeling methods
specifically tailored to the human microbiome have emerged, such as MICOM and mgPipe
(Baldini et al., 2019; Diener et al., 2020).

Statement of need
mgPipe is a method that combines individual GEMs into a shared compartment according to
the microbial abundances observed in every sample to construct a community-level metabolic
model. Input and output compartments are added to allow for a distinction between the
uptake and secretion of metabolites by the community. After constructing a representative
model for each sample, mgPipe computes the metabolic capacity for all present metabolites
in the form of Net Maximal Production Capacities (NMPCs). NMPCs are calculated as the
absolute difference between the maximum secretion through the output compartment and the
maximal uptake through the input compartment (Baldini et al., 2019). To accomplish this,
Flux Variability Analysis (FVA) (Mahadevan & Schilling, 2003) is used to compute reaction
bounds (minimum and maximum fluxes) through metabolite exchange reactions.

mgPipe models can further be used to explore metabolic interactions among individual taxa,
the contribution of these taxa to the overall community metabolism, and to raise hypotheses
regarding the biochemical machinery underlying an observed phenotype. This utility of mgPipe
has been demonstrated in various studies of the role of the human microbiome in complex
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conditions such as preterm birth, inflammatory bowel disease, colorectal cancer, and Parkinson’s
disease (Baldini et al., 2020; Heinken et al., 2019; Hertel et al., 2019, 2021; Kindschuh et
al., 2023). However, and despite its wide use and utility, only a MATLAB implementation
of mgPipe is currently available, limiting its accessibility for those who are not proficient in
MATLAB or cannot afford its license. Here, we provide a reliable, tested, open-source, and
efficient Python implementation of mgPipe.

Implementation & Availability
pymgpipe is a Python implementation of mgPipe (Baldini et al., 2019). It utilizes COBRApy
(Ebrahim et al., 2013) as its main constraint-based metabolic modeling interface, and optlang
(Jensen et al., 2017) to formulate and modify the underlying mathematical optimization
problem. pymgpipe merges individual GEMs into a single model following mgPipe’s biologically-
informed metabolic assumptions, such as the use of preordained diets, compartmentalized
structure, abundance-scaled constraints on microbial flux contributions (Heinken et al., 2013),
and community biomass optimization objective (Baldini et al., 2019). After building community-
level models, metabolic profiles are computed in the form of NMPCs, as discussed above
(Baldini et al., 2019). As part of this step, pymgpipe uses the VFFVA C package for a fast and
efficient FVA implementation (Guebila, 2020). pymgpipe is compatible with both the Gurobi
(Gurobi Optimization, LLC, 2023) and ILOG Cplex (IBM, Inc., 2023) solvers, which are both
commercially available and free for academic use.

pymgpipe models are backwards-compatible with the MATLAB mgPipe models to ensure
cross-software compatibility. Additionally, pymgpipe offers multithreading capabilities for both
model construction and simulation, making it scalable to studies with a large sample size.
The pymgpipe python package, as well as all associated documentation, tests, and example
workflows, can be found at https://github.com/korem-lab/pymgpipe.
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Comparison to mgPipe

Figure 1: Histogram of magnitude of differences in NMPCs between mgPipe and pymgpipe.

To assess the accuracy of pymgpipe we compared its models and predictions with mg-
Pipe, as implemented in the Microbiome Modeling Toolbox, Cobra Toolbox commit:
71c117305231f77a0292856e292b95ab32040711 (Baldini et al., 2019). We generated
community-scale models for a vaginal microbiome dataset consisting of 232 samples, each
composed of between 2 to 50 taxa (94 unique taxa), as previously described (Kindschuh et al.,
2023). The models exhibited identical metabolic networks and structure between the two
implementations (not shown). Additionally, metabolic profiles (NMPCs) output by pymgpipe
exhibited only minor differences (mean±sd. 5.37e-7±1.23e-5; difference is below 1e-5 for
99.4% of all data points; Figure 1). These differences are negligible (within solver tolerance)
and are most likely due to variations in FVA implementations (Guebila, 2020), solver versions,
and tolerances. Overall, pymgpipe presents as an accurate Python implementation of the
mgPipe pipeline.
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