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Summary
Fluorescence single molecule imaging comprises a variety of techniques that involve detecting
individual fluorescent molecules. Many of these techniques involve localizing individual fluores-
cent molecules with precisions below the diffraction limit, which limits the spatial resolution of
(visible) light-based microscopes. These methodologies are widely used to image biological
structures at the nanometer scale by fluorescently tagging the structures of interest, elucidating
details of the biological behavior observed.

Two common techniques are single-molecule localization microscopy (SMLM), (Betzig et al.,
2006; Fazel & Wester, 2022; Hell, 2007; Lidke et al., 2005; Rust et al., 2006; van de Linde
et al., 2011) which is used to produce 2D or 3D super-resolution images of static or nearly
static structures, and single-particle tracking (SPT) (Shen et al., 2017), which follows the
time course of one or a very small number of moving tagged molecules. SMLM often involves
distributions of particles at medium to high density, while SPT works in a very low density
domain. These procedures all require intensive numerical computation, and the methods are
tightly interwoven.

Statement of need
SMITE is a MATLAB-based toolbox that provides analysis tools for fluorescence single molecule
imaging with an emphasis on single molecule localization microscopy (SMLM) and single-particle
tracking (SPT). The SMITE toolbox consists of a MATLAB infrastructure with some C and
CUDA code embedded to provide CPU/GPU speed-ups for particularly expensive computations.
The source code for SMITE has been archived to GitHub: https://github.com/LidkeLab/smite

SMITE is designed around the concept that a parameter structure, the Single Molecule Fitting
(SMF) structure, uniquely and completely defines the data analysis. The results are completely
contained in a Single Molecule Data (SMD) structure. SMITE is designed to make lowest-level
tools just as easy to use as the higher-level application-specific classes. All tools make use
of the SMF and SMD structures. SMITE is organized into a set of namespaces that group
similar tools and concepts. The namespace +smi contains the highest level tools that will be
the most common entry point for processing SMLM and SPT data sets.
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Code coverage includes mature SMLM data analysis techniques (applying gain and offset
corrections to raw data, finding localizations, thresholding localizations based on various criteria,
frame connection and drift correction), SMLM/SPT simulations, sophisticated SPT analyses,
post-processing clustering and statistical analyses (e.g., diffusion analysis and hidden Markov
models for characterizing dimers in SPT results), a variety of visualizations, experimental point
spread function creation and characterization, all sprinkled with various examples of usage.
Interaction with these tools is via GUIs or scripting. See Figure 1 for several examples of
SMITE GUIs.

SMITE is a tool designed to be used by researchers and upper level students interested in
fluorescence single molecule imaging and applications. Some of the algorithms have already
been published: 2D Gaussian blob maximum likelihood estimate (Smith et al., 2010), frame
connection (Schodt & Lidke, 2021), drift correction (Wester et al., 2021), Bayesian grouping
of localizations (Fazel et al., 2022), diffusion estimation (Relich et al., 2016). However, this
is the first time that they have been integrated together, sharing common data structures.
Applications are described in (Bailey et al., 2022; Franco Nitta et al., 2021; Mazloom Farsibaf
et al., 2021; Schodt et al., 2023). Typical raw image data can be found in (Pallikkuth, Martin,
et al., 2018). A summary of the namespaces and classes in SMITE can be found in the online
documentation at https://github.com/LidkeLab/smite/blob/main/doc/SMITEclasses.md.

SMAP (Ries, 2020), an alternative MATLAB integrated SMLM/SPT code, is GUI oriented,
while SMITE was designed to be more focused on scripting (although many GUIs are available
as well) in order to make batch processing extremely simple. SMITE, in addition, is designed to
operate with HDF5 (Hierarchical Data Format) files which efficiently store very large datasets,
while SMAP preferentially works with TIFF formatted files. Both SMITE and SMAP work
with separate software to control instruments, MATLAB Instrument Control (MIC) (Pallikkuth,
Meddens, et al., 2018) and Micro-Manager (Edelstein et al., 2014), respectively.
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Figure 1: SMITE GUIs for (upper left) making movies from SPT trajectories, (upper right) SMLM
analysis, (lower left) channel registration, and (lower right) inspection of results contained in SMD
structures.
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