
Reducing the efforts to create reproducible analysis
code with FieldTrip
Mats W. J. van Es 1,2,3, Eelke Spaak 1, Jan-Mathijs Schoffelen 1, and
Robert Oostenveld 1,4

1 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
2 Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United
Kingdom 3 Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United
Kingdom 4 NatMEG, Karolinska Institutet, Stockholm, Sweden

DOI: 10.21105/joss.05566

Software
• Review
• Repository
• Archive

Editor: Claudia Solis-Lemus
Reviewers:

• @gflofst
• @ashahide

Submitted: 10 March 2023
Published: 21 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
FieldTrip (Oostenveld et al., 2011) is a (Inc., 2020) toolbox for the analysis of electroen-
cephalography (EEG) and magnetoencephalography (MEG) data. Typically, a researcher will
create an analysis pipeline by scripting a sequence of high-level FieldTrip functions. Depending
on researcher coding style, readability and reproducibility of the custom written analysis pipeline
is variable. reproducescript is a new functionality in the toolbox that allows complete re-
production of MATLAB-based scripts with little extra efforts on behalf of the user. Starting
from the researchers’ idiosyncratic pipeline scripts, this new functionality allows researchers to
automatically create and publish analysis pipeline scripts in a standardized format, along with
all relevant intermediate data and final results. This approach may prove useful as a general
framework for increasing scientific reproducibility, applicable well beyond the FieldTrip toolbox.

Statement of Need
Unsound scientific practices have led to a replication crisis in psychological science in recent
years (Open Science Collaboration, 2015; Simmons et al., 2011), and it is unlikely that cognitive
neuroscience is an exception (Button et al., 2013; Gilmore et al., 2017; Szucs & Ioannidis,
2017). One way to combat this crisis is through increasing methodological transparency
(Gilmore et al., 2017; Gleeson et al., 2017; Zwaan et al., 2017), but the increased sophistication
of experimental designs and analysis methods results in data analysis getting so complex that
the methods sections of manuscripts in most journals are too short to represent the analysis in
sufficient detail. Therefore, researchers are increasingly encouraged to share their data and
analysis pipelines along with their published results (Gleeson et al., 2017). However, analysis
scripts are often written by researchers without formal training in computer science, resulting
in the quality and readability of these analysis scripts to be highly dependent on individual
coding expertise and style. Even though the computational outcomes and interpretation of
the results can be correct, the inconsistent style and quality of analysis scripts make reviewing
the details of the analysis difficult for other researchers, even those directly involved in the
study. The quality of analysis scripts might thus compromise the reproducibility of obtained
results. The purpose of reproducescript is to automatically create analysis pipeline scripts in
a standardized format, along with all relevant intermediate data, that are executable, readable,
and therefore fully reproducible, and that can directly be shared with peers.

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

1

https://orcid.org/0000-0002-7133-509X
https://orcid.org/0000-0002-2018-3364
https://orcid.org/0000-0003-0923-6610
https://orcid.org/0000-0002-1974-1293
https://doi.org/10.21105/joss.05566
https://github.com/openjournals/joss-reviews/issues/5566
https://github.com/fieldtrip/fieldtrip
https://doi.org/10.5281/zenodo.10495308
https://solislemuslab.github.io/
https://orcid.org/0000-0002-9789-8915
https://github.com/gflofst
https://github.com/ashahide
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05566


State of the field
A number of strategies have been proposed to enhance the reproducibility of analysis pipelines
and scientific results. One option to improve reproducibility and efficiency through reuse
of code is through automation using pipeline systems (e.g. Taverna, Galaxy, LONI, PSOM,
Nipype, Brainlife; (Afgan et al., 2018; Bellec et al., 2012; Gorgolewski et al., 2011; Hayashi
et al., 2023; Oinn et al., 2004; Rex et al., 2003) or batch scripts (e.g. SPM’s matlabbatch
(Ashburner et al., 2020)). Generally, these provide the researcher with tools to construct an
analysis pipeline, manage the execution of the steps in the pipeline and, to a varying degree,
handle data.

Some drawbacks of pipeline systems in general are the following: they require the researcher
to learn how the pipeline software works on top of learning the analysis itself; the execution
requires extra software to be installed, or requires moving the execution from a local computer
to an online (cluster or cloud-based) system; they do not allow interactive analysis steps;
and the flexibility of pipeline systems is limited. For example, MNE-Python, a widely used
Python package for the analysis of electrophysiology data, has recently implemented the
MNE-BIDS-Pipeline, which produces a standardized analysis pipeline. However, the analysis
steps that are incorporated in this pipeline, as well as their order, is considerably limited
compared to the full breadth of the MNE-Python package. Furthermore, many researchers
use MATLAB for analyzing their data, which is incompatible with this Python based software
package.

Example
A detailed document with three examples that build up in complexity can be found on bioRxiv
as Reducing the efforts to create reproducible analysis code with FieldTrip. These examples
have also been incorporated on the FieldTrip website, see the example 1, example 2, and
example 3 on the corresponding GitHub pages. Below we list the core usage of the functionality,
as well as how it is implemented. Note that more detailed information on the structure of
the FieldTrip toolbox can be found at Introduction to the FieldTrip toolbox and Toolbox
architecture and organization of the source code.

The FieldTrip toolbox is not a program with a user interface where you can click around in,
but rather a collection of functions. Each FieldTrip function implements a specific algorithm,
for which specific parameters can be specified. These parameters on how the function behaves
is passed as a configuration structure, for example:

cfg1 = [];

cfg1.dataset = 'Subject01.ds';

cfg1.trialdef.eventtype = 'backpanel trigger';

cfg1.trialdef.eventvalue = 3; % the value of the stimulus trigger for fully

% incongruent (FIC).

cfg1.trialdef.prestim = 1;

cfg1.trialdef.poststim = 2;

Users mainly use the high-level functions as the main building blocks in their analysis scripts.
These functions are executed with the configuration structure (cfg) and in most cases with a
data structure as inputs. For example:

cfg1 = ft_definetrial(cfg1);

dataPreprocessed = ft_preprocessing(cfg1);

cfg2 = [];

dataTimelock = ft_timelockanalysis(cfg2, dataPreprocessed);

When using FieldTrip, the analysis protocol is the MATLAB script, in which you call the

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

2

https://doi.org/10.1101/2021.02.05.429886
https://www.fieldtriptoolbox.org/
https://github.com/fieldtrip/website/blob/master/example/reproducescript.md
https://github.com/fieldtrip/website/blob/master/example/reproducescript_group.md
https://github.com/fieldtrip/website/blob/master/example/reproducescript_andersen.md
https://github.com/fieldtrip/website/blob/master/tutorial/introduction.md
https://github.com/fieldtrip/website/blob/master/development/architecture.md
https://github.com/fieldtrip/website/blob/master/development/architecture.md
https://doi.org/10.21105/joss.05566


different FieldTrip functions. Such a script (or set of scripts) can be considered as an analysis
protocol, since in them you are defining all the steps that you are taking during the analysis.

The high-level functions (which take a cfg argument) mainly do data bookkeeping and
subsequently pass the data over to the algorithms in low-level functions. There are a number of
features in the bookkeeping that are always the same, hence these are shared over all high-level
functions using the so-called ft_preamble and ft_postamble functions, which are called at
the start and end of every high-level function, respectively.

ft_preamble ensures that the MATLAB path is set up correctly, that the notification system is
initialized, that errors can be more easily debugged, that input data is read, and analysis prove-
nance tracked. ft_postamble takes care of e.g. debugging, updating of analysis provenance,
and saving the output data.

The new functionality we propose, called reproducescript, is enabled by the user making a small
addition to the configuration structure cfg. This results in a number of low-level functions
in the pre- and postamble scripts being called which automatically create analysis pipeline
scripts in a standardized format, along with all relevant input, intermediate, and output data.
Together, these represent a non-ambiguous, standardized, fully reproducible, and readable
version of the original analysis pipeline. Moreover, this functionality is enabled without much
effort from the researcher, namely by embedding the analysis pipeline in the wrapper below.

global ft_default

ft_default = [];

% enable reproducescript by specifying a directory

ft_default.reproducescript = 'reproduce/';

% the original analysis pipeline with calls (high level) FieldTrip

% functions should be written here.

% disable reproducescript

ft_default.reproducescript = [];

ft_default is the structure in which global configuration defaults are stored; it is used
throughout all FieldTrip functions and global options at the start of the function are merged
with the user-supplied options in the cfg structure specific to the function.

The directory containing the reproducible analysis pipeline is structured as below. The
standardized script is in script.m, which is shown below the directory structure. All the
data files are saved with a unique identifier to which is referred in script.m, and hashes.mat

contains MD5 hashes for bookkeeping all input and output files. It furthermore allows any
researcher to check the integrity of all the intermediate and final result files of the pipeline.

directory:

reproduce/

script.m

hashes.mat

unique_identifier1_ft_preprocessing_input.mat

unique_identifier1_ft_preprocessing_output.mat

...

script.m:

%%

cfg = [];

cfg.dataset = 'Subject01.ds';

cfg.trialdef.eventtype = 'backpanel trigger';

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

3

https://doi.org/10.21105/joss.05566


cfg.trialdef.eventvalue = 3;

cfg.trialdef.prestim = 1;

cfg.trialdef.poststim = 2;

cfg.showlogo = 'yes';

cfg.tracktimeinfo = 'yes';

cfg.trackmeminfo = 'yes';

cfg.datafile = 'Subject01.ds/Subject01.meg4';

cfg.headerfile = 'Subject01.ds/Subject01.res4';

cfg.dataformat = 'ctf_meg4';

cfg.headerformat = 'ctf_res4';

cfg.trialfun = 'ft_trialfun_general';

cfg.representation = [];

cfg.trl =

'reproduce/20221128T140217_ft_preprocessing_largecfginput_trl.mat';

cfg.outputfile =

{'reproduce/20221128T140217_ft_preprocessing_output_data.mat'};

ft_preprocessing(cfg);

%%

% a new input variable is entering the pipeline here:

% 20221128T140224_ft_timelockanalysis_input_data.mat

cfg = [];

cfg.showlogo = 'yes';

cfg.tracktimeinfo = 'yes';

cfg.trackmeminfo = 'yes';

cfg.inputfile =

{'reproduce/20221128T140224_ft_timelockanalysis_input_data.mat'};

cfg.outputfile =

{'reproduce/20221128T140232_ft_timelockanalysis_output_timelock.mat'};

ft_timelockanalysis(cfg);

Because here we used reproducescript for a simple pipeline containing only three function calls,
the standardized script does not look much different. For more complex analysis pipelines the
differences with the original scripts tend to be larger. We refer the reader to the extended
examples mentioned above for further details.

Acknowledgements
The authors would like to thank Lau Andersen for publishing his original data and analysis
scripts in Andersen (2018) and his help in executing the pipeline. Author ES is supported by
The Netherlands Organisation for Scientific Research (NWO Veni: 016.Veni.198).

References

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J.,
Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S.,
Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg,
D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Research, 46(W1), W537–W544. https://doi.org/
10.1093/nar/gky379

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

4

https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://doi.org/10.21105/joss.05566


Andersen, L. M. (2018). Group Analysis in FieldTrip of Time-Frequency Responses: A
Pipeline for Reproducibility at Every Step of Processing, Going From Individual Sensor
Space Representations to an Across-Group Source Space Representation. Frontiers in
Neuroscience, 12, 261. https://doi.org/10.3389/fnins.2018.00261

Ashburner, J., Barnes, G., Chen, C.-C., Daunizeau, J., Flandin, G., Friston, K., Gitelman,
D., Volkmar, G., Henson, R., Hutton, C., Jafarian, A., Kiebel, S., Kilner, J., Litvak, V.,
Mattout, J., Moran, R., Penny, W., Phillips, C., Razi, A., … Zeidman, P. (2020). SPM12
Manual.

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., & Evans, A.
C. (2012). The pipeline system for Octave and Matlab (PSOM): A lightweight scripting
framework and execution engine for scientific workflows. Frontiers in Neuroinformatics, 6.
https://doi.org/10.3389/fninf.2012.00007

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., &
Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of
neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/
nrn3475

Gilmore, R. O., Diaz, M. T., Wyble, B. A., & Yarkoni, T. (2017). Progress Toward Openness,
Transparency, and Reproducibility in Cognitive Neuroscience. Annals of the New York
Academy of Sciences, 1396(1), 5–18. https://doi.org/10.1111/nyas.13325

Gleeson, P., Davison, A. P., Silver, R. A., & Ascoli, G. A. (2017). A Commitment to Open
Source in Neuroscience. Neuron, 96(5), 964–965. https://doi.org/10.1016/j.neuron.2017.
10.013

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., &
Ghosh, S. S. (2011). Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data
Processing Framework in Python. Frontiers in Neuroinformatics, 5. https://doi.org/10.
3389/fninf.2011.00013

Hayashi, S., Caron, B. A., Heinsfeld, A. S., Vinci-Booher, S., McPherson, B., Bullock, D.
N., Bertò, G., Niso, G., Hanekamp, S., Levitas, D., Ray, K., MacKenzie, A., Kitchell, L.,
Leong, J. K., Nascimento-Silva, F., Koudoro, S., Willis, H., Jolly, J. K., Pisner, D., …
Pestilli, F. (2023). Brainlife.io: A decentralized and open source cloud platform to support
neuroscience research. https://doi.org/10.48550/arXiv.2306.02183

Inc., T. M. (2020). MATLAB version: 9.9.0 (R2020b). The MathWorks Inc. https://www.
mathworks.com

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M. R., Wipat, A., & Li, P. (2004). Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 20(17), 3045–3054. https:
//doi.org/10.1093/bioinformatics/bth361

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source
Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data.
Computational Intelligence and Neuroscience, 2011, 1–9. https://doi.org/10.1155/2011/
156869

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science.
Science, 349(6251), aac4716–aac4716. https://doi.org/10.1126/science.aac4716

Rex, D. E., Ma, J. Q., & Toga, A. W. (2003). The LONI Pipeline Processing Environment.
NeuroImage, 19(3), 1033–1048. https://doi.org/10.1016/S1053-8119(03)00185-X

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

5

https://doi.org/10.3389/fnins.2018.00261
https://doi.org/10.3389/fninf.2012.00007
https://doi.org/10.1038/nrn3475
https://doi.org/10.1038/nrn3475
https://doi.org/10.1111/nyas.13325
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.48550/arXiv.2306.02183
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1093/bioinformatics/bth361
https://doi.org/10.1093/bioinformatics/bth361
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1016/S1053-8119(03)00185-X
https://doi.org/10.1177/0956797611417632
https://doi.org/10.21105/joss.05566


Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and
power in the recent cognitive neuroscience and psychology literature. PLoS Biology, 15(3).
https://doi.org/10.1371/journal.pbio.2000797

Zwaan, R. A., Etz, A., Lucas, R. E., & Donnellan, M. B. (2017). Making Replica-
tion Mainstream. Behavioral and Brain Sciences, 1–50. https://doi.org/10.1017/
S0140525X17001972

van Es et al. (2024). Reducing the efforts to create reproducible analysis code with FieldTrip. Journal of Open Source Software, 9(94), 5566.
https://doi.org/10.21105/joss.05566.

6

https://doi.org/10.1371/journal.pbio.2000797
https://doi.org/10.1017/S0140525X17001972
https://doi.org/10.1017/S0140525X17001972
https://doi.org/10.21105/joss.05566

	Summary
	Statement of Need
	State of the field
	Example
	Acknowledgements
	References

