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Summary
The central objects in many-body electronic structure theory, such as the GW method and the
random-phase approximation (RPA), are defined in the complex frequency or time domain.
We present here the GX-TimeFrequency component of the GreenX library, providing grids and
weights for imaginary time-frequency transformations needed for Green’s function based objects.
The GreenX library emerged from the NOMAD Center of Excellence, whose objective is to enable
accurate Green’s function based electronic structure theory calculations on state-of-the-art
supercomputers.

The package comprises minimax time and frequency grids (Kaltak et al., 2014b; Liu et al., 2016;
Takatsuka et al., 2008) and corresponding quadrature weights to numerically compute time and
frequency integrals of the correlation energy as well as weights for Fourier transforms between
time and frequency grids. While targeting low-scaling RPA and GW algorithms, its compact
frequency grids allows one to reduce the computational prefactor in RPA implementations with
conventional scaling. In addition, the time grids can be employed in Laplace-transformed direct
MP2 (LT-dMP2) calculations. The GreenX source code is freely available on GitHub, and
comes equipped with a build system, a comprehensive set of tests, and detailed documentation.

Statement of need
RPA, an accurate approach to compute the electronic correlation energy, is non-local, includes
long-range dispersion interactions and dynamic electronic screening, and is applicable to a wide
range of systems from 0 to 3 dimensions (Eshuis et al., 2012; Ren, Rinke, Joas, et al., 2012).
The GW method (Hedin, 1965) is based on the RPA susceptibility and has become the method
of choice for the calculation of direct and inverse photoemission spectra of molecules and
solids (Golze et al., 2019; Reining, 2018). Furthermore, GW forms the basis for Bethe-Salpeter
Equation (BSE) calculations of optical spectra (Onida et al., 2002).

Despite wide adoption, RPA and GW face computational challenges, especially for large
systems. Conventional RPA and GW implementations scale with the fourth power of system
size 𝑁 and are therefore usually limited to systems up to one hundred atoms (Panadés-Barrueta
& Golze, 2023; Stuke et al., 2020). To tackle larger and more realistic systems, scaling
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reductions present a promising strategy to decrease the computational cost. Such low-scaling
algorithms utilize real-space representations and time-frequency transformations, such as the
real-space/imaginary-time approach (Rojas et al., 1995) that reduces the complexity to 𝒪(𝑁3).
Several such cubic-scaling GW algorithms have recently been implemented, e.g. in a plane-
wave/projector-augmented-wave GW code (Kutepov et al., 2017; Liu et al., 2016) or with
localized basis sets using Gaussian (Duchemin & Blase, 2021; Graml et al., 2023; Wilhelm
et al., 2018, 2021) or Slater-type orbitals (Förster et al., 2023; Förster & Visscher, 2020,
2021a, 2021b). Similarly, low-scaling RPA algorithms were implemented with different basis
sets (Drontschenko et al., 2022; Duchemin & Blase, 2019; Graf et al., 2018; Kaltak et al.,
2014a, 2014b; Shi et al., 2023; Wilhelm et al., 2016).

With larger pre-factor, low-scaling algorithms are typically more expensive for smaller systems
and only become more cost-effective than canonical implementations for larger systems thanks to
their reduced scaling (Wilhelm et al., 2018). Furthermore, the numerical precision of low-scaling
GW algorithms is strongly coupled to the time-frequency treatment (Wilhelm et al., 2021).
Early low-scaling GW algorithms did not reach the same precision as canonical implementations
(Förster & Visscher, 2020; Vlcek et al., 2017; Wilhelm et al., 2018). Although appropriate
Fourier transforms and corresponding time-frequency grids have been implemented (Duchemin
& Blase, 2021; Förster & Visscher, 2021a; Liu et al., 2016; Wilhelm et al., 2021), these
implementations and grids are tied to particular codes and are often buried deeply inside the
code. Furthermore, reuse of such implementations elsewhere is often restricted by license
requirements or dependencies on definitions made in the host code.

In this work, we present the GX-TimeFrequency component of the GreenX library, an open-
source package distributed under the Apache license (Version 2.0). GX-TimeFrequency provides
time and frequency grids and corresponding integration weights to compute correlation energies
for Green’s function implementations. It also provides Fourier weights to convert between
imaginary time and imaginary frequency. The library can be used for low-scaling RPA and GW
implementations, or BSE codes, which use (low-scaling) GW as input. The minimax grids are
also suitable for RPA implementations with conventional scaling (Del Ben et al., 2015): they are
more compact than, e.g., Gauss-Legendre grids, resulting in a reduction of the computational
prefactor, while yielding same accuracy (Del Ben et al., 2015). However, minimax grids are not
recommended for conventional imaginary-frequency-only GW implementations (Ren, Rinke,
Blum, et al., 2012) since they have not been optimized for the frequency integral of the
self-energy.

While not being the main target of the library, the minimax time grids can also be utilized to
calculate the LT-dMP2 correlation energy (Almlöf, 1991; Glasbrenner et al., 2020; Jung et al.,
2004; Kaltak et al., 2014b; Takatsuka et al., 2008). The dMP2 term is one of two terms of
the MP2 correlation energy and, in a diagrammatic representation, corresponds to the lowest
order of the RPA correlation energy (Ren, Rinke, Joas, et al., 2012). The dMP2 correlation
energy can be reformulated using the Laplace transform to obtain the LT-dMP2 expression
which scales cubically in contrast to the 𝑂(𝑁5) scaling of standard MP2.

Mathematical framework

The single-particle Green’s function 𝐺 and the non-interacting susceptibility 𝜒0 are starting
points for several many-body perturbation theory methods. In canonical implementations,
𝜒0(r, r′, 𝑖𝜔) is often expressed in the Adler-Wiser form (Adler, 1962; Wiser, 1963), where the
sums over occupied (index 𝑗) and unoccupied (index 𝑎) single-particle states 𝜓 are coupled via
their corresponding energies 𝜀.
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Figure 1: Sketch of the methods supported by GX-TimeFrequency which start from �̂�0(𝑖𝜏). In addition
to the discrete time and frequency grids {𝜏𝑗} and {𝜔𝑘}, the library provides the corresponding weights
{𝜎𝑗} and {𝛾𝑘} for the integration of the correlation energy 𝐸𝑐 as well as the Fourier weights 𝛿𝑘𝑗,
𝜂𝑗𝑘 and 𝜆𝑘𝑗 defined in Equations 2–4. The bare and screened Coulomb interactions are indicated by
𝑣(r, r′) = 1/|r − r|′ and 𝑊(𝑖𝜔), respectively. 𝜖(𝑖𝜔) is the dynamical dielectric function, Σ the GW
self-energy, and AC stands for analytic continuation.

The Adler-Wiser expression of 𝜒0(𝑖𝜔) can be transformed into the imaginary time domain,
�̂�0(r, r′, 𝑖𝜏) = −𝑖𝐺(r, r′, 𝑖𝜏)𝐺(r′, r, −𝑖𝜏), yielding the equation in the yellow box in Fig. 1,
where the two sums are separated, leading to a favorable 𝒪(𝑁3) scaling. The polarizability
�̂�0(𝑖𝜏) is the starting point for LT-dMP2 and low-scaling RPA and GW. The low-scaling GW
procedure shown in Fig. 1 is known as the space-time method and given here in its original
formulation for planewave codes (Rojas et al., 1995).

The time-frequency integrals in Fig. 1 are performed numerically. All three methods in
Fig. 1 require a discrete time grid {𝜏𝑗}𝑛𝑗=1, where 𝑛 is the number of grid points. RPA and
GW additionally need the discrete frequency grid {𝜔𝑘}𝑛𝑘=1. Since �̂�0(r, r′, 𝑖𝜏) is sharply
peaked around the origin and then decays slowly, homogeneous time and frequency grids
are inefficient. For this reason, non-uniform grids like Gauss-Legendre (Rieger et al., 1999),
modified Gauss-Legendre (Ren, Rinke, Blum, et al., 2012) and the here presented minimax
(Kaltak et al., 2014b) grids are used. The minimax grids include also integration weights for the
computation of the correlation energies. For the calculation of the LT-dMP2 correlation energy
𝐸dMP2

𝑐 (Kaltak et al., 2014b; Takatsuka et al., 2008), a time quadrature is performed, for which
our library provides the integration weights {𝜎𝑗}𝑛𝑗=1. Similarly, the RPA correlation energy
𝐸RPA

𝑐 (Del Ben et al., 2015; Kaltak et al., 2014b) is computed from frequency quadrature
using integration weights {𝛾𝑘}𝑛𝑘=1.

Low-scaling RPA and GW algorithms include the Fourier transform of �̂�0(𝑖𝜏) to 𝜒0(𝑖𝜔) (blue
dashed box in Fig. 1). The GW space-time method performs two additional Fourier transforms:
The screened Coulomb interaction 𝑊(𝑖𝜔) is transformed to imaginary time (red dashed box),
and the self-energy Σ̂(𝑖𝜏) is Fourier transformed back to imaginary frequency (green dashed
box).
The conversion between imaginary time and frequency grids relies on nonuniform discrete
cosine and sine transformations for even and odd functions 𝐹 even/odd, respectively (Liu et al.,
2016). If the function 𝐹 is neither odd nor even, the computation of functions ̂𝐹 (𝑖𝜏) and
𝐹(𝑖𝜔) is split into even and an odd parts (Liu et al., 2016)

̂𝐹 (𝑖𝜏) = ̂𝐹 even(𝑖𝜏) + ̂𝐹 odd(𝑖𝜏) and 𝐹(𝑖𝜔) = 𝐹 even(𝑖𝜔) + 𝐹 odd(𝑖𝜔) (1)

with 𝐹 even(𝑥) = 𝐹 even(−𝑥) and 𝐹 odd(𝑥) = −𝐹 odd(−𝑥). The same parity rules hold for
quantities with a hat. The corresponding discrete Fourier transforms read (Liu et al., 2016)
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𝐹 even(𝑖𝜔𝑘) =
𝑛
∑
𝑗=1

𝛿𝑘𝑗cos(𝜔𝑘𝜏𝑗) ̂𝐹 even(𝑖𝜏𝑗)(2)

̂𝐹 even(𝑖𝜏𝑗) =
𝑛
∑
𝑘=1

𝜂𝑗𝑘cos(𝜏𝑗𝜔𝑘)𝐹 even(𝑖𝜔𝑘)(3)

𝐹 odd(𝑖𝜔𝑘) = 𝑖
𝑛
∑
𝑗=1

𝜆𝑘𝑗sin(𝜔𝑘𝜏𝑗) ̂𝐹 odd(𝑖𝜏𝑗) (4)

̂𝐹 odd(𝑖𝜏𝑗) = −𝑖
𝑛
∑
𝑘=1

𝜁𝑗𝑘sin(𝜏𝑗𝜔𝑘)𝐹 odd(𝑖𝜔𝑘) (5)

where {𝜏𝑗}𝑛𝑗=1, 𝜏𝑗 >0 are again the time grid points, {𝜔𝑘}𝑛𝑘=1, 𝜔𝑘 >0 frequency grid points and
{𝛿𝑘𝑗}𝑛𝑘,𝑗=1, {𝜂𝑗𝑘}𝑛𝑘,𝑗=1,{𝜆𝑘𝑗}𝑛𝑘,𝑗=1, {𝜁𝑗𝑘}𝑛𝑘,𝑗=1 the corresponding Fourier integration weights.
�̂�0(𝑖𝜏) is an even function: the transform defined in Equation 2 yields 𝜒0(𝑖𝜔). The screened
Coulomb interaction is also even and Equation 3 converts 𝑊(𝑖𝜔) to 𝑊(𝑖𝜏). The self-energy,
neither odd nor even, is treated with Equation 1 in combination with Equations 2 and 4 to
transform Σ̂(𝑖𝜏) to Σ(𝑖𝜔) (Liu et al., 2016). The transformation defined in Equation 5, not
required for the methods summarized in Fig. 1, is added for completeness.

Ideal grid parameters 𝜏𝑗, 𝜎𝑗, 𝜔𝑘, 𝛾𝑘, 𝛿𝑘𝑗, 𝜂𝑗𝑘, 𝜆𝑘𝑗 feature a vanishing error for the LT-dMP2
and RPA correlation energy integrations and Fourier transforms of 𝜒0,𝑊 and Σ (Fig. 1). We
compute minimax grid parameters 𝜏𝑗, 𝜎𝑗, 𝜔𝑘, 𝛾𝑘 that minimize the maximum error of the LT-
dMP2 and RPA correlation energy integration (Fig. 1) over all possible functions �̂�0(r, r′, 𝑖𝜏)
and 𝜒0(r, r′, 𝑖𝜔) (Kaltak et al., 2014b; Liu et al., 2016; Takatsuka et al., 2008). This minimax
grid optimization relies on the Remez algorithm (Kaltak et al., 2014b), an iterative, numerically
ill-conditioned procedure requiring high numerical precision. As the generation of the minimax
parameters 𝜏𝑗, 𝜎𝑗, 𝜔𝑘, 𝛾𝑘 is tedious, the computed minimax parameters {𝜏𝑗}𝑛𝑗=1, {𝜎𝑗}𝑛𝑗=1,
{𝜔𝑘}𝑛𝑘=1, {𝛾𝑘}𝑛𝑘=1 are tabulated for their later use in LT-dMP2, RPA, and GW calculations.

It has been shown that minimax time and frequency grids {𝜏𝑗}𝑛𝑗=1, {𝜔𝑘}𝑛𝑘=1 are also suitable
for performing Fourier transforms of 𝜒0,𝑊 and Σ (Liu et al., 2016). With knowledge of
the tabulated {𝜏𝑗}𝑛𝑗=1 and {𝜔𝑘}𝑛𝑘=1 parameters, least-squares optimization can be used to
calculate Fourier integration weights 𝛿𝑘𝑗, 𝜂𝑗𝑘, 𝜆𝑘𝑗. Least-squares optimization can be executed
by simple non-iterative linear matrix algebra which is straightforward, and done during the run
time of the GreenX library.
The optimal grid parameters 𝜏𝑗, 𝜎𝑗, 𝜔𝑘, 𝛾𝑘, 𝛿𝑘𝑗, 𝜂𝑗𝑘, 𝜆𝑘𝑗 depend on the energy gap min(𝜀𝑎−𝜀𝑗)
and the maximum eigenvalue difference max(𝜀𝑎 − 𝜀𝑗) of the material. We generated minimax
grid parameters 𝜏𝑗, 𝜎𝑗, 𝜔𝑘, 𝛾𝑘 assuming energy differences 𝜀𝑎 − 𝜀𝑗 ∈ [1,𝑅], see details in
Refs. (Hackbusch, 2019; Kaltak et al., 2014b). Our library stores minimax grid parameters
{𝜏𝑗(𝑅)}𝑛𝑗=1, {𝜎𝑗(𝑅)}𝑛𝑗=1, {𝜔𝑘(𝑅)}𝑛𝑘=1, {𝛾𝑘(𝑅)}𝑛𝑘=1 for 𝑛 ∈ [6, 34] and for different values
of the range 𝑅 (on average 15 𝑅-values for each 𝑛). For a material with energy gap
Δmin ∶= min(𝜀𝑎 − 𝜀𝑗) and maximum eigenvalue difference Δmax ∶= max(𝜀𝑎 − 𝜀𝑗), one
easily obtains the material-targeted minimax parameters {𝜏mat

𝑗 }𝑛𝑗=1, {𝜎mat
𝑗 }𝑛𝑗=1, {𝜔mat

𝑘 }𝑛𝑘=1,
{𝛾mat

𝑘 }𝑛𝑘=1 from rescaling stored parameters with a range 𝑅 ≥ Δmax/Δmin (Hackbusch, 2019;
Kaltak et al., 2014b),

𝜔mat
𝑘 = Δmin 𝜔𝑘(𝑅) , 𝛾mat

𝑘 = Δmin 𝛾𝑘(𝑅) , 𝜏mat
𝑗 =

𝜏𝑗(𝑅)
2Δmin

, 𝜎mat
𝑗 =

𝜎𝑗(𝑅)
2Δmin

(6)

Required input and output
GX-TimeFrequency requires as input the grid size 𝑛, the minimal eigenvalue difference Δmin, and
the maximal eigenvalue difference Δmax. For the output parameters, see Table 1. The library
component retrieves tabulated minimax parameters {𝜏𝑗(𝑅)}𝑛𝑗=1, {𝜎𝑗(𝑅)}𝑛𝑗=1, {𝜔𝑘(𝑅)}𝑛𝑘=1,
{𝛾𝑘(𝑅)}𝑛𝑘=1 of the requested grid size 𝑛 for the smallest range 𝑅 that satisfies 𝑅 ≥ Δmax/Δmin.
GX-TimeFrequency then rescales the retrieved minimax parameters according to Equation
6 with Δmin and prints the results {𝜏mat

𝑗 }𝑛𝑗=1, {𝜎mat
𝑗 }𝑛𝑗=1, {𝜔mat

𝑘 }𝑛𝑘=1, {𝛾mat
𝑘 }𝑛𝑘=1. Fourier

integration weights are computed on-the-fly via least-squares optimization. The precision of a
global forward cosine transformation followed by backward cosine transformations, is measured
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from

ΔCT = max
𝑗,𝑗′∈{1,2,…,𝑛}

∣
𝑛
∑
𝑘=1

𝜂𝑗′𝑘 cos(𝜏𝑗′𝜔𝑘) ⋅ 𝛿𝑘𝑗 cos(𝜔𝑘𝜏𝑗) − (𝕀)𝑗′𝑗∣ (7)

with 𝕀 being the identity matrix. Inputs and outputs are in atomic units.

Table 1: Output returned by the GX-TimeFrequency component of GreenX. We abbreviate low-scaling
as ls, and least-squares optimization as L2 opt.

Output Description Methods using the output Computation
{𝜏mat

𝑗 }𝑛𝑗=1 time points LT-dMP2, ls RPA, ls GW tabulated + rescaling
{𝜎mat

𝑗 }𝑛𝑗=1 time integration weights LT-dMP2 tabulated + rescaling
{𝜔mat

𝑘 }𝑛𝑘=1 frequency points ls & canonical RPA, ls GW tabulated + rescaling
{𝛾mat

𝑘 }𝑛𝑘=1 freq. integration weights ls & canonical RPA tabulated + rescaling
{𝛿𝑘𝑗}𝑛𝑘,𝑗=1 Fourier weights ls RPA, ls GW on-the-fly L2 opt
{𝜂𝑗𝑘}𝑛𝑘,𝑗=1 Fourier weights ls GW on-the-fly L2 opt
{𝜆𝑘𝑗}𝑛𝑘,𝑗=1 Fourier weights ls GW on-the-fly L2 opt
ΔCT duality error ls GW on-the-fly
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