
brains-py, A framework to support research on
energy-efficient unconventional hardware for machine
learning
Unai Alegre-Ibarra 1, Hans-Christian Ruiz Euler1, Humaid A.Mollah1,
Bozhidar P. Petrov1, Srikumar S. Sastry1, Marcus N. Boon1, Michel P. de
Jong1, Mohamadreza Zolfagharinejad1, Florentina M. J. Uitzetter1, Bram
van de Ven1, António J. Sousa de Almeida1, Sachin Kinge1, and Wilfred G.
van der Wiel2

1 MESA+ Institute for Nanotechnology & BRAINS Center for Brain-Inspired Nano Systems, University
of Twente, Netherlands 2 Advanced Tech., Materials Engineering Div., Toyota Motor Europe, Belgium

DOI: 10.21105/joss.05573

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @wob86
• @sisco0

Submitted: 04 December 2022
Published: 08 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Projections about the limitations of digital computers for deep learning models are leading to a
shift towards domain-specific hardware, where novel analogue components are sought after, due
to their potential advantages in power consumption. This paper introduces brains-py, a generic
framework to facilitate research on different sorts of disordered nano-material networks for
natural and energy-efficient analogue computing. Mainly, it has been applied to the concept of
dopant network processing units (DNPUs), a novel and promising CMOS-compatible nano-scale
tunable system based on doped silicon with potentially very low-power consumption at the
inference stage. The framework focuses on two material-learning-based approaches, for training
DNPUs to compute supervised learning tasks: evolution-in-matter and surrogate models.
While evolution-in-matter focuses on providing a quick exploration of newly manufactured
single DNPUs, the surrogate model approach is used for the design and simulation of the
interconnection between multiple DNPUs, enabling the exploration of their scalability. All
simulation results can be seamlessly validated on hardware, saving time and costs associated
with their reproduction. The framework is generic and can be reused for research on various
materials with different design aspects, providing support for the most common tasks required
for doing experiments with these novel materials.

Statement of need
The breakthroughs of deep learning come along with high energy costs, related to the high
throughput data-movement requirements for computing them. The increasing computational
demands of these models, along with the projected traditional hardware limitations, are
shifting the paradigm towards innovative hardware solutions, where analogue components for
application-specific integrated circuits are keenly sought (Kaspar et al., 2021). Dopant network
processing units (DNPUs) are a novel concept consisting of a lightly doped semiconductor,
edged with several electrodes, where hopping in dopant networks is the dominant charge
transport mechanism Chen et al. (2021) (See Figure 1). The output current of DNPUs is
a non-linear function of the input voltages, which can be tuned for representing different
complex functions. The process of finding adequate control voltages for a particular task
is called training. Once the right voltage values are found, the same device can represent
different complex functions on demand. The main advantages of these CMOS-compatible
devices are the very low currents, their multi-scale tunability on a high dimensional parameter

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

1

https://orcid.org/0000-0001-5957-7945
https://doi.org/10.21105/joss.05573
https://github.com/openjournals/joss-reviews/issues/5573
https://github.com/braiNEdarwin/brains-py
https://doi.org/10.5281/zenodo.8410268
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/wob86
https://github.com/sisco0
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05573

space, and their potential for extensive parallelism. Devices based on this concept enable
the creation of potentially very low energy-consuming hardware for computing deep neural
network (DNN) models, where each DNPU has a projected energy consumption of over 100
Tera-operations per second per Watt (Chen et al., 2020). This concept is still in its infancy,
and it can be developed in diverse ways. From various types of materials (host and dopants)
to distinct dopant concentrations, different device dimensions or the number of electrodes,
as well as different combinations of data-input, control and readout electrodes. Also, there
are different ways in which DNPU-based circuits could be scaled up, and having to create
hardware circuits from scratch is an arduous and time-consuming process. For this reason,
this paper introduces brains-py, a generic framework to facilitate research on different sorts of
disordered nano-material networks for natural and energy-efficient analogue computing. To
the extent of the knowledge of the authors, there is no other similar works on the area.

Framework description
The framework is composed of two main packages, brains-py (core) and brainspy-smg (surrogate
model generator). The former package contains the whole structure for processors, managing
the drivers for National Instruments devices that are connected to the DNPUs, and a set of
utils functions that can be used for managing the signals, custom loss/fitness functions, linear
transformations and i/o file management. The latter package contains the libraries required to
prepare DNPU devices for data gathering (multiple and single IV curves), to gather information
from multi-terminal devices in an efficient way (Ruiz Euler et al., 2020), as well as training
support for surrogate models, and consistency checks.

Finding functionality on a single DNPU circuit design
There are two main flavours in which single DNPUs can be trained: Evolution in Matter
or Surrogate model based gradient descent. The evolution in matter approach performs a
stochastic search for suitable control voltages for a single DNPU unit, measured in hardware,
for a given supervised task (Sivanandam & Deepa, 2008). It provides a quicker exploration
(directly on hardware) of the usefulness of newly manufactured single DNPUs. Typically,
common classification benchmarks are used, such as solving non-linear boolean gates (Chen
et al., 2020) or measuring the Vapnik-Chervonenkis dimension (Ruiz-Euler et al., 2021). On
the other hand, the surrogate model approach (Ruiz Euler et al., 2020) is better suited for
studying the scaling of DNPU hardware. The process is as follows:

1. Generate a surrogate model: For this, the multi-dimensional input-output data of the
device is densely sampled. The input consists of sinusoidal or triangular modulation
functions, chosen in such a way that the ratios of all frequency combinations are irrational,
guaranteeing a densely covered input-output space without repetitions. A DNN is trained
for representing the function of this input-output data.

2. Train for DNPU functionality: The weights of the trained DNN are frozen, and the
control voltages are declared as learnable parameters of the surrogate model of the
DNPU. The training for DNPU functionality is supported by the brains-py framework
but is also possible to use customised user-created gradient descent (Dogo et al., 2018)
algorithms using PyTorch.

3. Validate on hardware: Once satisfactory control voltages for a task are found, brains-py
supports seamlessly validating them on hardware, without having to modify the code of
the model, by simply changing the model to hardware-evaluation mode.

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

2

https://doi.org/10.21105/joss.05573

Figure 1: Scanning electron microscope image and its schematic cross section.

Figure 2: Simplified class diagram for processors package in brains-py library.

Finding functionality on multi-DNPU circuit design
One of the main aims of the framework is to explore different ways in which DNPU-based
circuits can be scaled up. Developers can create experiments using several surrogate models in
a custom PyTorch module, in a very similar way to how they would do it to create a custom
neural network with PyTorch (It allows to create your own module that is a torch.nn.Module
class child or lightning.LightningModule child from the Pytorch Lightning library). In this way,
they can explore different ways of interconnecting DNPUs, and analyse their performance. Any
experiment based on surrogate model simulations can then be validated on hardware with minor
changes required on the code. In this way, early proof-of-concept hardware can be prototyped
fast, avoiding having to develop again the experiments for hardware, which would otherwise be
cumbersome to reproduce. Common programming tasks such as loading datasets, creating
training loops, optimisers and loss functions required to implement the supervised learning task
can be programmed in a very similar way to how it would be done with any regular gradient

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

3

https://doi.org/10.21105/joss.05573

descent implementation in PyTorch (Paszke et al., 2019) and/or PyTorch Lightning (Falcon &
The Pytorch Lightning team, 2019). For providing validation on hardware with small code
modifications, the brains-py library leverages the concept of ‘Processor ’, which allows changing
the internal behaviour of the class to measure on simulations or hardware measurements, while
maintaining an equivalent behaviour for the public methods. Internally, the Processor class
also deals with the differences between input/output signals that are inherent to measuring in
hardware or simulations (e.g., noise or length of signal). This greatly facilitates the reuse of
the same code for simulations and hardware measurements. Without this feature, the research
on these materials becomes difficult and time-consuming to reproduce in hardware. The library
also provides programmers with additional modules, which are associated to a Processor by
an aggregation relationship, that can already replicate the scaling of DNPUs in ways that are
known to work well (see Figure 2):

• DNPU: It is a very similar class to that of a Processor, but it contains the control voltages,
declared as learnable parameters. Therefore, it only has the same input dimensions as
the number of available data input electrodes. It is also a child of torch.nn.Module, and
it allows for representing a layer of DNPUs in a time-multiplexing fashion (with the same
Processor instance). It also enables applying linear transformations to the inputs before
passing them to the processor.

• DNPUBatchNorm: It is a child of the DNPU class, and it also facilitates the incorporation
of a batch normalisation layer after the output, which has been shown to produce better
results (Ruiz-Euler et al., 2021). It also enables logging outputs before and after
normalisation.

• DNPUConv2d : It is a child of the DNPU class, and it enables the processing of
the information in the same way as a convolution layer would do, for different kernel
dimensions. In each case, a number of devices in parallel (time-multiplexed) will represent
a kernel (e.g., for a 3x3 convolution, a layer of three eight-electrode devices can be used,
where each device has 3 data-input electrodes and a single output). This layer can be
used to reproduce computation with DNPUs using convolutional neural network (CNN)
layers, and replicate existing deep-learning models.

Conclusions and future research lines
We introduce a framework for facilitating the characterisation of different materials that
can be used for energy-efficient computations in the context of machine learning hardware
development research. It supports developers during typical tasks required for the mentioned
purpose, including preliminary direct measurements of devices, the gathering of data and
training of surrogate models, and the possibility to seamlessly validate simulations of surrogate
models in hardware. In this way, researchers can save a significant amount of energy and
resources when exploring the abilities of different DNPU materials and designs for creating
energy-efficient hardware. The libraries have been designed with reusability in mind.

Projects
The tool is primarily used in the Center for Brain-Inspired NanoSystems, which includes
the MESA+ Institute for Nanotechnology, the Digital Society Institute and the Faculty of
Behavioural, Management and Social sciences. It has been used for several projects:

1. HYBRAIN – Hybrid electronic-photonic architectures for brain-inspired computing

Project funded by the European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101046878

https://hybrain.eu/

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

4

https://hybrain.eu/
https://doi.org/10.21105/joss.05573

2. Collaborative Research Centre on Intelligent Matter (CRC 1459)

Project funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) through project 433682494 - SFB 1459 - Intelligent Matter - University of Münster

3. Evolutionary Computing using Nanomaterial Networks

Project funded by the Dutch Research Council (NWO) Natuurkunde Projectruimte
Grant No. 680-91-114

4. Nanomaterial Networks for Artificial Intelligence in the Automotive Industry: NANO(AI)2

Project funded by the Dutch Research Council (NWO) Natuurkunde Projectruimte
Grant No. 16237 DFG, German Research Foundation) through project 433682494 – SFB
1459

Within the scope of the above projects, several PhDs and Master Students have developed
and are developing code based on this library.

Acknowledgements
This project has received financial support from the University of Twente, the Dutch Research
Council (HTSM grant no. 16237 and Natuurkunde Projectruimte grant no. 680-91-114) as
well as from Toyota Motor Europe N.V. We acknowledge financial support from the HYBRAIN
project funded by the European Union’s Horizon Europe research and innovation programme
under Grant Agreement No 101046878. This work was further funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through project 433682494 –
SFB 1459.

References
Chen, T., Bobbert, P. A., & Wiel, W. G. van der. (2021). 1/f noise and machine intelligence

in a nonlinear dopant atom network. Small Science, 1(3), 2000014. https://doi.org/10.
1002/smsc.202000014

Chen, T., Gelder, J. van, Ven, B. van de, Amitonov, S. V., Wilde, B. de, Euler, H.-C. R.,
Broersma, H., Bobbert, P. A., Zwanenburg, F. A., & Wiel, W. G. van der. (2020).
Classification with a disordered dopant-atom network in silicon. Nature, 577(7790),
341–345. https://doi.org/10.1038/s41586-019-1901-0

Dogo, E., Afolabi, O., Nwulu, N., Twala, B., & Aigbavboa, C. (2018). A comparative analysis
of gradient descent-based optimization algorithms on convolutional neural networks. 2018
International Conference on Computational Techniques, Electronics and Mechanical Systems
(CTEMS), 92–99. https://doi.org/10.1109/CTEMS.2018.8769211

Falcon, W., & The Pytorch Lightning team, the. (2019). PyTorch lightning: The lightweight
PyTorch wrapper for high-performance AI research. https://github.com/Lightning-AI/
lightning. https://doi.org/10.5281/zenodo.3828935

Kaspar, C., Ravoo, B., Wiel, W. G. van der, Wegner, S., & Pernice, W. (2021). The rise of
intelligent matter. Nature, 594(7863), 345–355.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems,
32.

Ruiz Euler, H.-C., Boon, M. N., Wildeboer, J. T., Ven, B. van de, Chen, T., Broersma,
H., Bobbert, P. A., & Wiel, W. G. van der. (2020). A deep-learning approach to

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

5

https://www.uni-muenster.de/SFB1459/
https://doi.org/10.1002/smsc.202000014
https://doi.org/10.1002/smsc.202000014
https://doi.org/10.1038/s41586-019-1901-0
https://doi.org/10.1109/CTEMS.2018.8769211
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.21105/joss.05573

realizing functionality in nanoelectronic devices. Nature Nanotechnology, 15(12), 992–998.
https://doi.org/10.1038/s41565-020-00779-y

Ruiz-Euler, H.-C., Alegre-Ibarra, U., Ven, B. van de, Broersma, H., Bobbert, P. A., & Wiel,
W. G. van der. (2021). Dopant network processing units: Towards efficient neural
network emulators with high-capacity nanoelectronic nodes. Neuromorphic Computing and
Engineering, 1(2), 024002. https://doi.org/10.1088/2634-4386/ac1a7f

Sivanandam, S., & Deepa, S. (2008). Genetic algorithms. In Introduction to genetic algorithms
(pp. 15–37). Springer.

Tertilt, H., Bakker, J., Becker, M., Wilde, B. de, Klanberg, I., Geurts, B. J., Wiel, W.
G. van der, Heuer, A., & Bobbert, P. A. (2022). Hopping-transport mechanism for
reconfigurable logic in disordered dopant networks. Physical Review Applied, 17(6),
064025. https://doi.org/10.1103/PhysRevApplied.17.064025

Alegre-Ibarra et al. (2023). brains-py, A framework to support research on energy-efficient unconventional hardware for machine learning. Journal
of Open Source Software, 8(90), 5573. https://doi.org/10.21105/joss.05573.

6

https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1088/2634-4386/ac1a7f
https://doi.org/10.1103/PhysRevApplied.17.064025
https://doi.org/10.21105/joss.05573

	Summary
	Statement of need
	Framework description
	Finding functionality on a single DNPU circuit design
	Finding functionality on multi-DNPU circuit design
	Conclusions and future research lines
	Projects
	Acknowledgements
	References

