
SMART: Spatial Modeling Algorithms for Reactions
and Transport
Justin G. Laughlin 1, Jørgen S. Dokken 2, Henrik N. T. Finsberg 3,
Emmet A. Francis 1, Christopher T. Lee 1, Marie E. Rognes 2, and
Padmini Rangamani 1¶

1 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla,
CA, United States of America 2 Department of Numerical Analysis and Scientific Computing, Simula
Research Laboratory, Oslo, Norway 3 Department of Computational Physiology, Simula Research
Laboratory, Oslo, Norway ¶ Corresponding author

DOI: 10.21105/joss.05580

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @oalii
• @vincent-noel
• @mbarzegary

Submitted: 09 June 2023
Published: 19 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Recent advances in microscopy and 3D reconstruction methods have allowed for characterization
of cellular morphology in unprecedented detail, including the irregular geometries of intracellular
subcompartments such as membrane-bound organelles. These geometries are now compatible
with predictive modeling of cellular function. Biological cells respond to stimuli through
sequences of chemical reactions generally referred to as cell signaling pathways. The propagation
and reaction of chemical substances in cell signaling pathways can be represented by coupled
nonlinear systems of reaction-transport equations. These reaction pathways include numerous
chemical species that react across boundaries or interfaces (e.g., the cell membrane and
membranes of organelles within the cell) and domains (e.g., the bulk cell volume and the
interior of organelles). Such systems of multi-dimensional partial differential equations (PDEs)
are notoriously difficult to solve because of their high dimensionality, non-linearities, strong
coupling, stiffness, and potential instabilities. In this work, we describe Spatial Modeling
Algorithms for Reactions and Transport (SMART), a finite-element-based simulation package
for model specification and numerical simulation of spatially-varying reaction-transport processes.
SMART is based on the FEniCS finite element library, provides a symbolic representation
framework for specifying reaction pathways, and supports geometries in 2D and 3D including
large and irregular cell geometries obtained from modern ultrastructural characterization
methods.

Statement of need
SMART has been designed to fulfill the need for an open-source software capable of modeling
cell signaling pathways within complicated cell geometries, including reactions and transport
between different subcellular surfaces and volumes. In SMART, the user specifies species,
reactions, compartments, and parameters to define a high-level model representation. This
framework uses a similar convention to Systems Biology Markup Language (SBML, (J. C.
Schaff et al., 2023)), making the software approachable to a wider user base. SMART provides
features for converting the model representation into appropriate coupled systems of ordinary
differential equations (ODEs) and PDEs, and for solving these efficiently using finite element
and finite difference discretizations.

SMART has been designed for use by computational biologists and biophysicists. SMART
leverages state-of-the-art finite element software (FEniCS) (Alnæs et al., 2015; Logg et al.,
2012) which is compatible with a variety of meshing software such as Gmsh (Geuzaine &
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Remacle, 2009) and GAMer 2 (Lee et al., 2020), allowing users to solve nonlinear systems of
PDEs within complex cellular geometries. Moreover, the design of SMART as a FEniCS-based
package allows for ease of extension and integration with additional physics, enabling, e.g.,
coupled simulations of cell signaling and mechanics or electrophysiology. SMART complements
several existing software tools that are used to assemble and solve equations describing cell
signaling networks such as VCell (Cowan et al., 2012; J. Schaff et al., 1997), COPASI (Hoops
et al., 2006), and MCell (Kerr et al., 2008).

Examples of SMART use
SMART offers unique opportunities to examine the behavior of signaling networks in realistic
cell geometries. As a proof of concept, we used SMART to model a coupled volume-surface
reaction-diffusion system on a mesh of a dendritic spine generated by GAMer 2 (Figure 1,
(Lee et al., 2020)). More recently, we implemented a detailed model of neuron calcium
dynamics in SMART (Figure 2). This model describes IP3R- and ryanodine receptor (RyR)-
mediated calcium release following stimulation by neurotransmitters. These SMART simulations
recapitulate the complex dynamics of calcium-induced calcium release from the endoplasmic
reticulum and predict strong spatial gradients of calcium near regions of calcium release
(Figure 2C).

Figure 1: Simulation of a surface-volume reaction in a realistic dendritic spine geometry using SMART. A)
Diagram of the chosen surface-volume reaction, in which cytosolic species, A, reacts with a species in the
membrane, X, to produce a new membrane species, B (originally described in (Rangamani et al., 2013)).
Note that this is the same reaction used in Example 2 of the SMART demos. B) Geometry-preserving
mesh of a neuronal dendritic spine attached to a portion of the dendritic shaft, constructed from electron
microscopy data of a mouse neuron using GAMer 2. The mesh contains two domains - the surface,
Γ𝑃𝑀, which represents the plasma membrane, and the inner volume, Ω𝐶𝑦𝑡𝑜, which represents the cytosol.
C) Concentration of product B on the plasma membrane at 𝑡 = 1.0 s, with the diffusion coefficient of
species A (𝐷𝐴) set to 10 μm2/s. D) Range of concentrations of species B over time for the simulation
shown in (C), where the solid lines denote the minimum and maximum concentrations at each time point
and the dotted line indicates the average concentration. This figure was adapated from Fig 10 in (Lee et
al., 2020); additional parameters and details are given in the original paper.
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Figure 2: Model of calcium dynamics in a neuron using SMART (implemented in Example 6). A)
Diagram of the calcium signaling network in the main body (soma) of a neuron. IP3 production at the
plasma membrane (PM) triggers the opening of IP3R calcium channels in the endoplasmic reticulum (ER)
membrane, leading to calcium elevations in the cytosol. In parallel, calcium entry through voltage-gated
calcium channels (VGCCs) and calcium release from the ER through ryanodine receptors (RyRs) also
increase cytosolic calcium levels, while calcium export through the plasma membrane ATPase (PMCA)
and sodium-calcium exchanger (NCX) and pumping of calcium back into the ER via the sarco-endoplasmic
reticulum ATPase (SERCA) counteract these calcium increases. Calcium rapidly binds to other proteins
in the cytosol such as parvalbumin (PV) and calbindin-D28k (CD28k), which effectively act as calcium
buffers. For the mathematical details of this model, see Example 6 in the SMART demos. The mesh
depicted on the right shows the “sphere-in-a-sphere” geometry tested in Example 6, in which the inner
sphere corresponds to the ER and the outer region corresponds to the cytosol in a portion of the neuron
soma. B) Plots of the time-dependent activation functions, corresponding to calcium entry through
VGCCs (upper plot) and IP3 production at the plasma membrane. Patterns of calcium influx were
derived from those used in (Doi et al., 2005), and IP3 production was fit to expected values from
simulating a larger signaling network of glutamate-dependent IP3 production. C) Cytosolic and ER
calcium concentrations plotted over the mesh at indicated time points. After the final “simple spike” of
calcium at 𝑡 = 0.05 s, IP3 production slowly leads to a small amount of calcium release from the ER.
However, once the “complex spike” occurs at 𝑡 = 0.1 s, a larger amount of calcium is released from the
ER, manifesting as a sharp local gradient around the ER that is visible at 𝑡 = 0.111 s. D) Plots of the
average cytosolic calcium (upper plot) and average ER calcium (lower plot) over time for the simulation
shown in (C). Note that the plots shown in (B) and (D) can be automatically generated by running
Example 6 in the SMART demos.
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