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Summary
Markov Chain Monte Carlo (MCMC) methods form the dominant set of algorithms for Bayesian
inference. The appeal of MCMC in the physical sciences is that it produces a set of samples
from the posterior distribution of model parameters given the available data, integrating
any prior information one may have about the parameters and providing a fully flexible way
to quantify uncertainty. However, it is well known that in high dimensions (many model
parameters) standard MCMC struggles to converge to a solution due the exponentially large
space to be sampled. This led to the development of gradient-based MCMC algorithms, which
use the gradient of the posterior distribution to efficiently navigate the parameter space. While
this allows MCMC to scale to high dimensions, it restricts the form of the posterior to be
continuously differentiable. Certain forms of prior information used in imaging problems, such
as sparsity, use a non-smooth prior distribution, thus gradient-based MCMC cannot be used for
these inference problems. Proximal MCMC leverages the proximity mapping operator (Moreau,
1962), a form of generalised gradient, used in convex optimisation problems to efficiently
navigate non-smooth parameter spaces.

Statement of need
High-dimensional imaging inverse problems arise in many fields, including astrophysics, geo-
physics and medical imaging. They involve recovering the pixels of an image of, for example,
the inside of a human body from attenuated X-rays. For applications where the data may
be incomplete, as is often the case in geophysical and astrophysical imaging, compressed
sensing (Candès et al., 2011; Donoho, 2006) has demonstrated that sparsity in a particular
basis (typically wavelets) can be used to accurately recover signals from an underdetermined
system.. In a Bayesian setting, sparse priors come in the form of the non-differentiable Laplace
distribution, resulting in the need for proximal mappings for optimisation problems (Moreau,
1962; Parikh & Boyd, 2014). The use of proximal operators in MCMC was first proposed by
Pereyra (2016), modifying the gradient-based Langevin MCMC, and has since been used in
astrophysical and geophysical applications (e.g. Cai et al., 2018; Marignier et al., 2023; Price
et al., 2020).

MCMC methods already have popular implementations. For example, gradient-based Hamil-
tonian Monte Carlo is implemented in STAN (Stan Development Team, 2023), and emcee
(Foreman-Mackey et al., 2013) is a Python implementation of the affine-invariant ensemble
sampler MCMC (Goodman & Weare, 2010) popular in the astrophysics community. To the
author’s knowledge, however, there exists no Python implementation of proximal MCMC
readily available other than a recent implementation of proximal nested sampling (Cai et al.,
2021) whose primary aim is calculating the marginal likelihood. PxMCMC is a Python package
implementing proximal algorithms from Pereyra (2016) and Pereyra et al. (2020) for efficiently
obtaining posterior samples from high-dimensional parameter spaces. The class-based API
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abstracts out the main components of MCMC into interoperable classes, thereby allowing
users to implement their own forward models (physical model) and priors, and even their own
MCMC sampler if desired. Originally developed to solve inverse imaging problems defined
on spherical domains (Marignier, 2023; Marignier et al., 2023), the package provides priors
to promote sparsity in a spherical wavelet domain using transforms from the S2LET package
(Leistedt et al., 2013). Examples provided in the package include a common problem in global
seismic tomography and a full-sky cosmological mass-mapping problem, the details of which
can be found in Marignier et al. (2023) and Marignier (2023).

Acknowledgements
The author would like to acknowledge Jason D. McEwen for his general advice with proximal
methods, and Ana M. G. Ferreira and Thomas D. Kitching for their support with the geophysical
and astrophysical applications.

References
Cai, X., McEwen, J. D., & Pereyra, M. (2021). ”High-dimensional bayesian model selection by

proximal nested sampling”. ArXiv. https://doi.org/10.48550/arXiv.2106.03646

Cai, X., Pereyra, M., & McEwen, J. D. (2018). Uncertainty quantification for radio interfero-
metric imaging - I. Proximal MCMC methods. Monthly Notices of the Royal Astronomical
Society, 480(3), 4154–4169. https://doi.org/10.1093/MNRAS/STY2004

Candès, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with
coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1),
59–73. https://doi.org/10.1016/j.acha.2010.10.002

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4),
1289–1306. https://doi.org/10.1109/TIT.2006.871582

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). Emcee: The MCMC
hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306–312.
https://doi.org/10.1086/670067

Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Communications
in Applied Mathematics and Computational Science, 5(1), 65–80. https://doi.org/10.
2140/camcos.2010.5.65

Leistedt, B., McEwen, J. D., Vandergheynst, P., & Wiaux, Y. (2013). S2LET: A code
to perform fast wavelet analysis on the sphere. Astronomy & Astrophysics, 558, A128.
https://doi.org/10.1051/0004-6361/201220729

Marignier, A. (2023). From dark matter to the earth’s deep interior: There and back again [PhD
thesis, UCL (University College London)]. https://discovery.ucl.ac.uk/id/eprint/10162902/

Marignier, A., McEwen, J. D., Ferreira, A. M. G., & Kitching, T. D. (2023). Posterior sampling
for inverse imaging problems on the sphere in seismology and cosmology. RAS Techniques
and Instruments, 2(1), 20–32. https://doi.org/10.1093/rasti/rzac010

Moreau, J. J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien.
Comptes Rendu Hebdomadaires Des Seances de l’Academie Des Sciences, 255, 2897–2899.

Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in Optimization,
1(3), 127–239. https://doi.org/10.1561/2400000003

Pereyra, M. (2016). Proximal Markov chain Monte Carlo algorithms. Statistics and Computing,
26(4), 745–760. https://doi.org/10.1007/s11222-015-9567-4

Marignier. (2023). PxMCMC: A Python package for proximal Markov Chain Monte Carlo. Journal of Open Source Software, 8(87), 5582.
https://doi.org/10.21105/joss.05582.

2

https://doi.org/10.48550/arXiv.2106.03646
https://doi.org/10.1093/MNRAS/STY2004
https://doi.org/10.1016/j.acha.2010.10.002
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1086/670067
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1051/0004-6361/201220729
https://discovery.ucl.ac.uk/id/eprint/10162902/
https://doi.org/10.1093/rasti/rzac010
https://doi.org/10.1561/2400000003
https://doi.org/10.1007/s11222-015-9567-4
https://doi.org/10.21105/joss.05582


Pereyra, M., Mieles, L. V., & Zygalakis, K. C. (2020). Accelerating Proximal Markov Chain
Monte Carlo by using an explicit stabilized method. SIAM Journal on Imaging Sciences,
13(2), 905–935. https://doi.org/10.1137/19m1283719

Price, M. A., Cai, X., McEwen, J. D., Pereyra, M., & Kitching, T. D. (2020). Sparse bayesian
mass mapping with uncertainties: Local credible intervals. Monthly Notices of the Royal
Astronomical Society, 492(1), 394–404. https://doi.org/10.1093/mnras/stz3453

Stan Development Team. (2023). Stan Modeling Language Users Guide and Reference Manual,
2.32. https://mc-stan.org

Marignier. (2023). PxMCMC: A Python package for proximal Markov Chain Monte Carlo. Journal of Open Source Software, 8(87), 5582.
https://doi.org/10.21105/joss.05582.

3

https://doi.org/10.1137/19m1283719
https://doi.org/10.1093/mnras/stz3453
https://mc-stan.org
https://doi.org/10.21105/joss.05582

	Summary
	Statement of need
	Acknowledgements
	References

