
QuantEcon.py: A community based Python library for
quantitative economics
Quentin Batista5, Chase Coleman4, Yuya Furusawa6, Shu Hu1, Smit
Lunagariya3, Spencer Lyon4, Matthew McKay1, Daisuke Oyama2, Thomas J.
Sargent4, Zejin Shi7, John Stachurski1, Pablo Winant8, Natasha Watkins1,
Ziyue Yang1, and Hengcheng Zhang1

1 The Australian National University 2 University of Tokyo 3 Indian Institute of Technology (BHU),
Varanasi 4 New York University 5 Massachusetts Institute of Technology 6 Crop.inc 7 The University of
Arizona 8 ESCP Business School and Ecole Polytechnique

DOI: 10.21105/joss.05585

Software
• Review
• Repository
• Archive

Editor: Sebastian Benthall
Reviewers:

• @janosg
• @mnwhite

Submitted: 20 May 2023
Published: 06 January 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Economics traditionally relied on tractable mathematical models, diagrams, and simple regres-
sion methods to analyze and understand economic phenomena. However, in recent decades,
economists have increasingly shifted towards more computationally challenging problems,
involving large numbers of heterogeneous agents and complex nonlinear interactions.

QuantEcon.py is an open-source Python library that helps to support this shift towards more
computational intensive research in the field of economics. First released in 2014, QuantEcon.py
has been under continuous development for around 9 years. The library includes a wide range
of functions for economic analysis, including numerical methods, data visualization, estimation,
and dynamic programming, implementing a number of fundamental algorithms used in high
performance computational economics. In this article we review the key features of the library.

Statement of Need
Economists use a variety of economic, statistical and mathematical models as building blocks
for constructing larger and more fully-featured models. Some of these are relatively unique to
economics and finance. For example, many macroeconomic and financial models include a
stochastic volatility component, since asset markets often exhibit bursts of volatility. Other
building blocks involve optimization routines, such as firms that maximize present value given
estimated time paths for profits and interest rates. Firms modeled in this way are then plugged
into larger models that contain households, banks and other economic agents.

QuantEcon.py focuses on supplying building blocks for constructing economic models that
are fast, efficient and simple to modify. This encourages code re-use across the economics
community, without enforcing particular model structure through a top-down development
process.

Implementation Choices
In terms of software systems and architecture, QuantEcon.py is built on top of standard libraries
such as NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020), while also heavily
leveraging Numba (Lam et al., 2015) for just-in-time (JIT) code acceleration, combined with
automatic parallelization and caching when possible. (Numba is a just-in-time (JIT) compiler
for Python first developed by Continuum Analytics that can generate optimized LLVM machine

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

1

https://doi.org/10.21105/joss.05585
https://github.com/openjournals/joss-reviews/issues/5585
https://github.com/QuantEcon/QuantEcon.py
https://doi.org/10.5281/zenodo.10345102
https://sbenthall.net
https://orcid.org/0000-0002-1789-5109
https://github.com/janosg
https://github.com/mnwhite
https://creativecommons.org/licenses/by/4.0/
https://github.com/quantecon/QuantEcon.py
https://github.com/quantecon/QuantEcon.py
https://github.com/quantecon/QuantEcon.py
https://github.com/quantecon/QuantEcon.py
https://numpy.org
https://scipy.org
https://numba.pydata.org
https://numba.pydata.org
https://doi.org/10.21105/joss.05585

code at run-time.) JIT-based acceleration is essential to QuantEcon’s strategy of providing
code for computational economics that is performant, portable and easy to modify.

For installation and maintenance ease, QuantEcon maintainers restrict contributions to depend
on libraries available in Anaconda.

The documentation is available on readthedocs.

Status
QuantEcon.py is released under the open-source MIT License and is partly maintained and
supported by QuantEcon, a NumFOCUS fiscally sponsored project dedicated to development
and documentation of modern open source computational tools for economics, econometrics,
and decision making.

QuantEcon.py is available through the Python Package Index:

pip install quantecon

or through conda:

conda install -c conda-forge quantecon

Capabilities
This section gives a basic introduction of quantecon and its usage. The quantecon python
library consists of the following top level modules:

• Game Theory (game_theory)
• Markov Chains (markov)
• Optimization algorithms (optimize)
• Random generation utilities (random)

The library also has some other submodules containing utility functions and miscellaneous
tools such as implementations of Kalman filters, tools for directed graphs, algorithm for solving
linear quadratic control, etc.

Game Theory
The game_theory submodule provides efficient implementation of state-of-the-art algorithms
for computing Nash equilibria of normal form games.

The following snippet computes all mixed Nash equilibria of a 2-player (non-degenerate) normal
form game by support enumeration and vertex enumeration:

>>> import quantecon as qe

>>> import numpy as np

>>> import pprint

>>> bimatrix = [[(3, 3), (3, 2)],

... [(2, 2), (5, 6)],

... [(0, 3), (6, 1)]]

>>> g = qe.game_theory.NormalFormGame(bimatrix)

>>> print(g)

2-player NormalFormGame with payoff profile array:

[[[3, 3], [3, 2]],

[[2, 2], [5, 6]],

[[0, 3], [6, 1]]]

>>> NEs = qe.game_theory.support_enumeration(g)

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

2

https://www.anaconda.com/
https://quanteconpy.readthedocs.io/en/latest/
https://github.com/quantecon/QuantEcon.py
https://github.com/quantecon/QuantEcon.py
https://pypi.org/project/quantecon/
https://doi.org/10.21105/joss.05585

>>> pprint.pprint(NEs)

[(array([1., 0., 0.]), array([1., 0.])),

(array([0.8, 0.2, 0.]), array([0.66666667, 0.33333333])),

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667]))]

>>> NEs = qe.game_theory.vertex_enumeration(g)

>>> pprint.pprint(NEs)

[(array([1., 0., 0.]), array([1., 0.])),

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667])),

(array([0.8, 0.2, 0.]), array([0.66666667, 0.33333333]))]

The Lemke-Howson algorithm (Codenotti et al., 2008; Lemke & Howson, 1964) is also
implemented, which computes one Nash equilibrium of a 2-player normal form game:

>>> qe.game_theory.lemke_howson(g)

(array([1., 0., 0.]), array([1., 0.]))

>>> qe.game_theory.lemke_howson(g, init_pivot=1)

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667]))

This routine lemke_howson scales up to games with several hundreds actions.

For N-player games, the McLennan-Tourky algorithm (McLennan & Tourky, 2005) computes
one (approximate) Nash equilibrium:

>>> payoff_profiles = [(3, 0, 2),

... (1, 0, 0),

... (0, 2, 0),

... (0, 1, 0),

... (0, 1, 0),

... (0, 3, 0),

... (1, 0, 0),

... (2, 0, 3)]

>>> g = qe.game_theory.NormalFormGame(np.reshape(payoff_profiles, (2, 2, 2, 3)))

>>> print(g)

3-player NormalFormGame with payoff profile array:

[[[[3, 0, 2], [1, 0, 0]],

[[0, 2, 0], [0, 1, 0]]],

[[[0, 1, 0], [0, 3, 0]],

[[1, 0, 0], [2, 0, 3]]]]

>>> mct = qe.game_theory.mclennan_tourky(g)

>>> pprint.pprint(mct)

(array([0.61866018, 0.38133982]),

array([0.4797706, 0.5202294]),

array([0.37987835, 0.62012165]))

The game_theory submodule also contains implementation of several learning/evolutionary
dynamics algorithms, such as fictitious play (and its stochastic version), best response dynamics
(and its stochastic version), local interaction dynamics, and logit response dynamics.

Markov Chains
The markov module deals with computation related to Markov chains.

This module contains a class MarkovChain which represents finite-state discrete-time Markov
chains.

>>> P = [[0, 1, 0, 0, 0],

... [0, 0, 1, 0, 0],

... [0, 0, 0, 1, 0],

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

3

https://doi.org/10.21105/joss.05585

... [2/3, 0, 0, 0, 1/3],

... [0, 0, 0, 1, 0]]

>>> mc = qe.markov.MarkovChain(P)

The MarkovChain object provides access to useful information such as:

• Whether it is irreducible:

>>> mc.is_irreducible

True

• Its stationary distribution(s):

>>> mc.stationary_distributions

array([[0.2, 0.2, 0.2, 0.3, 0.1]])

• Whether it is (a)periodic:

>>> mc.is_aperiodic

False

• Its period and cyclic classes:

>>> mc.period

2

>>> mc.cyclic_classes

[array([0, 2, 4]), array([1, 3])]

• Simulation of time series of station transitions:

>>> mc.simulate(10)

array([0, 1, 2, 3, 0, 1, 2, 3, 4, 3])

The MarkovChain object is also capable of determining communication classes and recurrent
classes (relavant for reducible Markov chains).

It is also possible to construct a MarkovChain object as an approximation of a linear Gaussian
AR(1) process,

𝑦𝑡 = 𝜇 + 𝜌𝑦𝑡−1 + 𝜖𝑡,

by Tauchen’s method (tauchen) (Tauchen, 1986) or Rouwenhorst’s method (rouwenhorst)
(Rouwenhorst, 1995):

>>> tauchen_mc = qe.markov.tauchen(n=4, rho=0.5, sigma=0.5, mu=0., n_std=3)

>>> tauchen_mc.state_values

array([-1.73205081, -0.57735027, 0.57735027, 1.73205081])

>>> rhorst_mc = qe.markov.rouwenhorst(n=4, rho=0.5, sigma=0.5, mu=0.)

>>> rhorst_mc.state_values

array([-1. , -0.33333333, 0.33333333, 1.])

The markov module can also be used for representing and solving discrete dynamic programs
(also known as Markov decision processes) with finite states and actions:

>>> R = [[5, 10],

... [-1, -float('inf')]] # Rewards

>>> Q = [[(0.5, 0.5), (0, 1)],

... [(0, 1), (0.5, 0.5)]] # Transition probabilities

>>> beta = 0.95 # Discount factor

>>> ddp = qe.markov.DiscreteDP(R, Q, beta)

The DiscreteDP class currently implements the following solution algorithms:

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

4

https://doi.org/10.21105/joss.05585

• value iteration;
• policy iteration;
• modified policy iteration;
• linear programming.

To solve the model:

• By the value iteration method:

>>> res = ddp.solve(method='value_iteration', v_init=[0, 0], epsilon=0.01)

>>> res.sigma # (Approximate) optimal policy function

array([0, 0])

>>> res.v # (Approximate) optimal value function

array([-8.5665053 , -19.99507673])

• By the policy iteration method:

>>> res = ddp.solve(method='policy_iteration', v_init=[0, 0])

>>> res.sigma # Optimal policy function

array([0, 0])

>>> res.v # Optimal value function

array([-8.57142857, -20.])

Similary, we can also solve the model using modified policy iteration and linear programming
by changing the method option in ddp.solve.

Optimization
The optimize module provides various routines for solving optimization problems and root
finding.

Although some methods such as bisect and brentq have been implemented in popular
libraries such as SciPy, the major benefit of the quantecon implementation relative to other
implementations is JIT-acceleration and hence they can be embedded in user-defined functions
that target the Numba JIT compiler.

Linear Programming

This module contains a linear programming solver based on the simplex method,
linprog_simplex, which solves a linear program of the following form:

max
𝑥

𝑐𝑇𝑥

subject to 𝐴ub𝑥 ≤ 𝑏ub,
𝐴eq𝑥 = 𝑏eq,
𝑥 ≥ 0.

The following is a simple example solved by linprog_simplex:

>>> c = [4, 3]

>>> A_ub = [[1, 1],

... [1, 2],

... [2, 1]]

>>> b_ub = [10, 16, 16]

>>> c, A_ub, b_ub = map(np.asarray, [c, A_ub, b_ub])

>>> res = qe.optimize.linprog_simplex(c, A_ub=A_ub, b_ub=b_ub)

>>> res.x, res.fun, res.success

(array([6., 4.]), 36.0, True)

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

5

https://doi.org/10.21105/joss.05585

>>> res.lambd # Dual solution

array([2., 0., 1.])

Scalar Maximization

The optimize module implements the Nelder-Mead algorithm (Gao & Han, 2012; Lagarias et
al., 1998; Singer & Singer, 2004) for maximizing a scalar-valued function with one or more
variables.

>>> from numba import njit

>>> @njit

... def rosenbrock(x):

... return -(100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0])**2)

...

>>> x0 = np.array([-2, 1])

>>> res = qe.optimize.nelder_mead(rosenbrock, x0)

>>> res.x, res.fun, res.success

(array([0.99999814, 0.99999756]), -1.6936258239463265e-10, True)

There is also the scalar maximization function brentq_max which maximizes a function within
a given bounded interval and returns a maximizer, the maximum value attained, and some
additional information related to convergence and the number of iterations.

>>> @njit

... def f(x):

... return -(x + 2.0)**2 + 1.0

...

>>> qe.optimize.brent_max(f, -3, 2) # x, max_value_of_f, extra_info

(-2.0, 1.0, (0, 6))

Root Finding

This module also includes routines that find a root of a given function. Presently, quantecon
has the following implementations:

• bisect

• brentq

• newton

• newton_halley

• newton_secant

The following snippet uses brentq to find the root of the function 𝑓 in the interval (−1, 2).

>>> @njit

... def f(x):

... return np.sin(4 * (x - 1/4)) + x + x**20 - 1

...

>>> qe.optimize.brentq(f, -1, 2)

results(root=0.40829350427935973, function_calls=12, iterations=11, converged=True)

Miscellaneous Tools
The library also contains some other tools that help in solving problems such as linear quadratic
optimal control and discrete Lyapunov equations, analyzing dynamic linear economies, etc. A
brief overview of some of these routines is given below:

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

6

https://doi.org/10.21105/joss.05585

Matrix Equations

The function solve_discrete_lyapunov computes the solution of the discrete Lyapunov
equation given by:

𝐴𝑋𝐴′ −𝑋 +𝐵 = 0.

>>> A = np.full((2, 2), .5)

>>> B = np.array([[.5, -.5], [-.5, .5]])

>>> qe.solve_discrete_lyapunov(A, B)

array([[0.5, -0.5],

[-0.5, 0.5]])

Similarly, the function solve_discrete_riccati computes the solution of the discrete-time
algebraic Riccati equation (Chiang et al., 2010):

𝑋 = 𝐴′𝑋𝐴− (𝑁 +𝐵′𝑋𝐴)′(𝐵′𝑋𝐵 +𝑅)−1(𝑁 + 𝐵′𝑋𝐴) + 𝑄.

LQ Control

The library has a class LQ for analyzing linear quadratic optimal control problems of either the
infinite horizon form or the finite horizon form:

>>> Q = np.array([[0., 0.], [0., 1]])

>>> R = np.array([[1., 0.], [0., 0]])

>>> RF = np.diag(np.full(2, 100))

>>> A = np.full((2, 2), .95)

>>> B = np.full((2, 2), -1.)

>>> beta = .95

>>> T = 1

>>> lq_mat = qe.LQ(Q, R, A, B, beta=beta, T=T, Rf=RF)

>>> lq_mat

Linear Quadratic control system

- beta (discount parameter) : 0.95

- T (time horizon) : 1

- n (number of state variables) : 2

- k (number of control variables) : 2

- j (number of shocks) : 1

Graph Tools

The library contains a class DiGraph to represent directed graphs and provide information
about the graph structure such as strong connectivity, periodicity, etc.

>>> adj_matrix = [[0, 1, 0, 0, 0],

... [0, 0, 1, 0, 0],

... [0, 0, 0, 1, 0],

... [1, 0, 0, 0, 1],

... [0, 0, 0, 1, 0]]

>>> node_labels = ['a', 'b', 'c', 'd', 'e']

>>> g = qe.DiGraph(adj_matrix, node_labels=node_labels)

>>> g

Directed Graph:

- n(number of nodes): 5

• Check if the graph is strongly connected:

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

7

https://doi.org/10.21105/joss.05585

>>> g.is_strongly_connected

True

• Inspect the periodicity of the graph:

>>> g.is_aperiodic

False

>>> g.period

2

>>> g.cyclic_components

[array(['a', 'c', 'e'], dtype='<U1'), array(['b', 'd'], dtype='<U1')]

Future Work
QuantEcon developers are considering future projects such as adding more equilibrium com-
putation algorithms for N-player games and supporting extensive form games. In addition,
QuantEcon aims to extend its current implementation to other backend libraries like JAX or
other GPU providing libraries to utilize modern computing systems and provide faster execution
speeds.

References
Chiang, C.-Y., Fan, H.-Y., & Lin, W.-W. (2010). Structured Doubling Algorithm for Discrete-

Time Algebraic Riccati Equations with Singular Control Weighting Matrices. Taiwanese
Journal of Mathematics, 14(3A), 933–954. https://doi.org/10.11650/twjm/1500405875

Codenotti, B., De Rossi, S., & Pagan, M. (2008). An Experimental Analysis of Lemke-Howson
Algorithm. arXiv Preprint arXiv:0811.3247.

Gao, F., & Han, L. (2012). Implementing the Nelder-Mead Simplex Algorithm with Adaptive
Parameters. Computational Optimization and Applications, 51(1), 259–277. https://doi.
org/10.1007/s10589-010-9329-3

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P.,
… Oliphant, T. E. (2020). Array Programming with NumPy. Nature, 585, 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties
of the Nelder–Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization,
9(1), 112–147.

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT Compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6.

Lemke, C. E., & Howson, J. T., Jr. (1964). Equilibrium Points of Bimatrix Games. Journal of
the Society for Industrial and Applied Mathematics, 12(2), 413–423.

McLennan, A., & Tourky, R. (2005). From Imitation Games to Kakutani. University of
Pennsylvania.

Rouwenhorst, K. G. (1995). Asset Pricing Implications of Equilibrium Business Cycle Models.
In Frontiers of Business Cycle Research (pp. 294–330). Princeton University Press.
https://doi.org/10.2307/j.ctv14163jx.16

Singer, S., & Singer, S. (2004). Efficient Implementation of the Nelder–Mead Search Algorithm.
Applied Numerical Analysis & Computational Mathematics, 1(2), 524–534. https://doi.
org/10.1002/anac.200410015

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

8

https://doi.org/10.11650/twjm/1500405875
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.2307/j.ctv14163jx.16
https://doi.org/10.1002/anac.200410015
https://doi.org/10.1002/anac.200410015
https://doi.org/10.21105/joss.05585

Tauchen, G. (1986). Finite State Markov-Chain Approximations to Univariate and Vector Au-
toregressions. Economics Letters, 20(2), 177–181. https://doi.org/10.1016/0165-1765(86)
90168-0

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3),
261–272.

Batista et al. (2024). QuantEcon.py: A community based Python library for quantitative economics. Journal of Open Source Software, 9(93), 5585.
https://doi.org/10.21105/joss.05585.

9

https://doi.org/10.1016/0165-1765(86)90168-0
https://doi.org/10.1016/0165-1765(86)90168-0
https://doi.org/10.21105/joss.05585

	Summary
	Statement of Need
	Implementation Choices
	Status
	Capabilities
	Game Theory
	Markov Chains
	Optimization
	Linear Programming
	Scalar Maximization
	Root Finding

	Miscellaneous Tools
	Matrix Equations
	LQ Control
	Graph Tools

	Future Work
	References

