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Summary
Economics traditionally relied on tractable mathematical models, diagrams, and simple regres-
sion methods to analyze and understand economic phenomena. However, in recent decades,
economists have increasingly shifted towards more computationally challenging problems,
involving large numbers of heterogeneous agents and complex nonlinear interactions.

QuantEcon.py is an open-source Python library that helps to support this shift towards more
computational intensive research in the field of economics. First released in 2014, QuantEcon.py
has been under continuous development for around 9 years. The library includes a wide range
of functions for economic analysis, including numerical methods, data visualization, estimation,
and dynamic programming, implementing a number of fundamental algorithms used in high
performance computational economics. In this article we review the key features of the library.

Statement of Need
Economists use a variety of economic, statistical and mathematical models as building blocks
for constructing larger and more fully-featured models. Some of these are relatively unique to
economics and finance. For example, many macroeconomic and financial models include a
stochastic volatility component, since asset markets often exhibit bursts of volatility. Other
building blocks involve optimization routines, such as firms that maximize present value given
estimated time paths for profits and interest rates. Firms modeled in this way are then plugged
into larger models that contain households, banks and other economic agents.

QuantEcon.py focuses on supplying building blocks for constructing economic models that
are fast, efficient and simple to modify. This encourages code re-use across the economics
community, without enforcing particular model structure through a top-down development
process.

Implementation Choices
In terms of software systems and architecture, QuantEcon.py is built on top of standard libraries
such as NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020), while also heavily
leveraging Numba (Lam et al., 2015) for just-in-time (JIT) code acceleration, combined with
automatic parallelization and caching when possible. (Numba is a just-in-time (JIT) compiler
for Python first developed by Continuum Analytics that can generate optimized LLVM machine
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code at run-time.) JIT-based acceleration is essential to QuantEcon’s strategy of providing
code for computational economics that is performant, portable and easy to modify.

For installation and maintenance ease, QuantEcon maintainers restrict contributions to depend
on libraries available in Anaconda.

The documentation is available on readthedocs.

Status
QuantEcon.py is released under the open-source MIT License and is partly maintained and
supported by QuantEcon, a NumFOCUS fiscally sponsored project dedicated to development
and documentation of modern open source computational tools for economics, econometrics,
and decision making.

QuantEcon.py is available through the Python Package Index:

pip install quantecon

or through conda:

conda install -c conda-forge quantecon

Capabilities
This section gives a basic introduction of quantecon and its usage. The quantecon python
library consists of the following top level modules:

• Game Theory (game_theory)
• Markov Chains (markov)
• Optimization algorithms (optimize)
• Random generation utilities (random)

The library also has some other submodules containing utility functions and miscellaneous
tools such as implementations of Kalman filters, tools for directed graphs, algorithm for solving
linear quadratic control, etc.

Game Theory
The game_theory submodule provides efficient implementation of state-of-the-art algorithms
for computing Nash equilibria of normal form games.

The following snippet computes all mixed Nash equilibria of a 2-player (non-degenerate) normal
form game by support enumeration and vertex enumeration:

>>> import quantecon as qe

>>> import numpy as np

>>> import pprint

>>> bimatrix = [[(3, 3), (3, 2)],

... [(2, 2), (5, 6)],

... [(0, 3), (6, 1)]]

>>> g = qe.game_theory.NormalFormGame(bimatrix)

>>> print(g)

2-player NormalFormGame with payoff profile array:

[[[3, 3], [3, 2]],

[[2, 2], [5, 6]],

[[0, 3], [6, 1]]]

>>> NEs = qe.game_theory.support_enumeration(g)
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>>> pprint.pprint(NEs)

[(array([1., 0., 0.]), array([1., 0.])),

(array([0.8, 0.2, 0. ]), array([0.66666667, 0.33333333])),

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667]))]

>>> NEs = qe.game_theory.vertex_enumeration(g)

>>> pprint.pprint(NEs)

[(array([1., 0., 0.]), array([1., 0.])),

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667])),

(array([0.8, 0.2, 0. ]), array([0.66666667, 0.33333333]))]

The Lemke-Howson algorithm (Codenotti et al., 2008; Lemke & Howson, 1964) is also
implemented, which computes one Nash equilibrium of a 2-player normal form game:

>>> qe.game_theory.lemke_howson(g)

(array([1., 0., 0.]), array([1., 0.]))

>>> qe.game_theory.lemke_howson(g, init_pivot=1)

(array([0. , 0.33333333, 0.66666667]), array([0.33333333, 0.66666667]))

This routine lemke_howson scales up to games with several hundreds actions.

For N-player games, the McLennan-Tourky algorithm (McLennan & Tourky, 2005) computes
one (approximate) Nash equilibrium:

>>> payoff_profiles = [(3, 0, 2),

... (1, 0, 0),

... (0, 2, 0),

... (0, 1, 0),

... (0, 1, 0),

... (0, 3, 0),

... (1, 0, 0),

... (2, 0, 3)]

>>> g = qe.game_theory.NormalFormGame(np.reshape(payoff_profiles, (2, 2, 2, 3)))

>>> print(g)

3-player NormalFormGame with payoff profile array:

[[[[3, 0, 2], [1, 0, 0]],

[[0, 2, 0], [0, 1, 0]]],

[[[0, 1, 0], [0, 3, 0]],

[[1, 0, 0], [2, 0, 3]]]]

>>> mct = qe.game_theory.mclennan_tourky(g)

>>> pprint.pprint(mct)

(array([0.61866018, 0.38133982]),

array([0.4797706, 0.5202294]),

array([0.37987835, 0.62012165]))

The game_theory submodule also contains implementation of several learning/evolutionary
dynamics algorithms, such as fictitious play (and its stochastic version), best response dynamics
(and its stochastic version), local interaction dynamics, and logit response dynamics.

Markov Chains
The markov module deals with computation related to Markov chains.

This module contains a class MarkovChain which represents finite-state discrete-time Markov
chains.

>>> P = [[0, 1, 0, 0, 0],

... [0, 0, 1, 0, 0],

... [0, 0, 0, 1, 0],
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... [2/3, 0, 0, 0, 1/3],

... [0, 0, 0, 1, 0]]

>>> mc = qe.markov.MarkovChain(P)

The MarkovChain object provides access to useful information such as:

• Whether it is irreducible:

>>> mc.is_irreducible

True

• Its stationary distribution(s):

>>> mc.stationary_distributions

array([[0.2, 0.2, 0.2, 0.3, 0.1]])

• Whether it is (a)periodic:

>>> mc.is_aperiodic

False

• Its period and cyclic classes:

>>> mc.period

2

>>> mc.cyclic_classes

[array([0, 2, 4]), array([1, 3])]

• Simulation of time series of station transitions:

>>> mc.simulate(10)

array([0, 1, 2, 3, 0, 1, 2, 3, 4, 3])

The MarkovChain object is also capable of determining communication classes and recurrent
classes (relavant for reducible Markov chains).

It is also possible to construct a MarkovChain object as an approximation of a linear Gaussian
AR(1) process,

𝑦𝑡 = 𝜇 + 𝜌𝑦𝑡−1 + 𝜖𝑡,

by Tauchen’s method (tauchen) (Tauchen, 1986) or Rouwenhorst’s method (rouwenhorst)
(Rouwenhorst, 1995):

>>> tauchen_mc = qe.markov.tauchen(n=4, rho=0.5, sigma=0.5, mu=0., n_std=3)

>>> tauchen_mc.state_values

array([-1.73205081, -0.57735027, 0.57735027, 1.73205081])

>>> rhorst_mc = qe.markov.rouwenhorst(n=4, rho=0.5, sigma=0.5, mu=0.)

>>> rhorst_mc.state_values

array([-1. , -0.33333333, 0.33333333, 1. ])

The markov module can also be used for representing and solving discrete dynamic programs
(also known as Markov decision processes) with finite states and actions:

>>> R = [[5, 10],

... [-1, -float('inf')]] # Rewards

>>> Q = [[(0.5, 0.5), (0, 1)],

... [(0, 1), (0.5, 0.5)]] # Transition probabilities

>>> beta = 0.95 # Discount factor

>>> ddp = qe.markov.DiscreteDP(R, Q, beta)

The DiscreteDP class currently implements the following solution algorithms:
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• value iteration;
• policy iteration;
• modified policy iteration;
• linear programming.

To solve the model:

• By the value iteration method:

>>> res = ddp.solve(method='value_iteration', v_init=[0, 0], epsilon=0.01)

>>> res.sigma # (Approximate) optimal policy function

array([0, 0])

>>> res.v # (Approximate) optimal value function

array([ -8.5665053 , -19.99507673])

• By the policy iteration method:

>>> res = ddp.solve(method='policy_iteration', v_init=[0, 0])

>>> res.sigma # Optimal policy function

array([0, 0])

>>> res.v # Optimal value function

array([ -8.57142857, -20. ])

Similary, we can also solve the model using modified policy iteration and linear programming
by changing the method option in ddp.solve.

Optimization
The optimize module provides various routines for solving optimization problems and root
finding.

Although some methods such as bisect and brentq have been implemented in popular
libraries such as SciPy, the major benefit of the quantecon implementation relative to other
implementations is JIT-acceleration and hence they can be embedded in user-defined functions
that target the Numba JIT compiler.

Linear Programming

This module contains a linear programming solver based on the simplex method,
linprog_simplex, which solves a linear program of the following form:

max
𝑥

𝑐𝑇𝑥

subject to 𝐴ub𝑥 ≤ 𝑏ub,
𝐴eq𝑥 = 𝑏eq,
𝑥 ≥ 0.

The following is a simple example solved by linprog_simplex:

>>> c = [4, 3]

>>> A_ub = [[1, 1],

... [1, 2],

... [2, 1]]

>>> b_ub = [10, 16, 16]

>>> c, A_ub, b_ub = map(np.asarray, [c, A_ub, b_ub])

>>> res = qe.optimize.linprog_simplex(c, A_ub=A_ub, b_ub=b_ub)

>>> res.x, res.fun, res.success

(array([6., 4.]), 36.0, True)
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>>> res.lambd # Dual solution

array([2., 0., 1.])

Scalar Maximization

The optimize module implements the Nelder-Mead algorithm (Gao & Han, 2012; Lagarias et
al., 1998; Singer & Singer, 2004) for maximizing a scalar-valued function with one or more
variables.

>>> from numba import njit

>>> @njit

... def rosenbrock(x):

... return -(100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0])**2)

...

>>> x0 = np.array([-2, 1])

>>> res = qe.optimize.nelder_mead(rosenbrock, x0)

>>> res.x, res.fun, res.success

(array([0.99999814, 0.99999756]), -1.6936258239463265e-10, True)

There is also the scalar maximization function brentq_max which maximizes a function within
a given bounded interval and returns a maximizer, the maximum value attained, and some
additional information related to convergence and the number of iterations.

>>> @njit

... def f(x):

... return -(x + 2.0)**2 + 1.0

...

>>> qe.optimize.brent_max(f, -3, 2) # x, max_value_of_f, extra_info

(-2.0, 1.0, (0, 6))

Root Finding

This module also includes routines that find a root of a given function. Presently, quantecon
has the following implementations:

• bisect

• brentq

• newton

• newton_halley

• newton_secant

The following snippet uses brentq to find the root of the function 𝑓 in the interval (−1, 2).

>>> @njit

... def f(x):

... return np.sin(4 * (x - 1/4)) + x + x**20 - 1

...

>>> qe.optimize.brentq(f, -1, 2)

results(root=0.40829350427935973, function_calls=12, iterations=11, converged=True)

Miscellaneous Tools
The library also contains some other tools that help in solving problems such as linear quadratic
optimal control and discrete Lyapunov equations, analyzing dynamic linear economies, etc. A
brief overview of some of these routines is given below:
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Matrix Equations

The function solve_discrete_lyapunov computes the solution of the discrete Lyapunov
equation given by:

𝐴𝑋𝐴′ −𝑋 +𝐵 = 0.

>>> A = np.full((2, 2), .5)

>>> B = np.array([[.5, -.5], [-.5, .5]])

>>> qe.solve_discrete_lyapunov(A, B)

array([[ 0.5, -0.5],

[-0.5, 0.5]])

Similarly, the function solve_discrete_riccati computes the solution of the discrete-time
algebraic Riccati equation (Chiang et al., 2010):

𝑋 = 𝐴′𝑋𝐴− (𝑁 +𝐵′𝑋𝐴)′(𝐵′𝑋𝐵 +𝑅)−1(𝑁 + 𝐵′𝑋𝐴) + 𝑄.

LQ Control

The library has a class LQ for analyzing linear quadratic optimal control problems of either the
infinite horizon form or the finite horizon form:

>>> Q = np.array([[0., 0.], [0., 1]])

>>> R = np.array([[1., 0.], [0., 0]])

>>> RF = np.diag(np.full(2, 100))

>>> A = np.full((2, 2), .95)

>>> B = np.full((2, 2), -1.)

>>> beta = .95

>>> T = 1

>>> lq_mat = qe.LQ(Q, R, A, B, beta=beta, T=T, Rf=RF)

>>> lq_mat

Linear Quadratic control system

- beta (discount parameter) : 0.95

- T (time horizon) : 1

- n (number of state variables) : 2

- k (number of control variables) : 2

- j (number of shocks) : 1

Graph Tools

The library contains a class DiGraph to represent directed graphs and provide information
about the graph structure such as strong connectivity, periodicity, etc.

>>> adj_matrix = [[0, 1, 0, 0, 0],

... [0, 0, 1, 0, 0],

... [0, 0, 0, 1, 0],

... [1, 0, 0, 0, 1],

... [0, 0, 0, 1, 0]]

>>> node_labels = ['a', 'b', 'c', 'd', 'e']

>>> g = qe.DiGraph(adj_matrix, node_labels=node_labels)

>>> g

Directed Graph:

- n(number of nodes): 5

• Check if the graph is strongly connected:
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>>> g.is_strongly_connected

True

• Inspect the periodicity of the graph:

>>> g.is_aperiodic

False

>>> g.period

2

>>> g.cyclic_components

[array(['a', 'c', 'e'], dtype='<U1'), array(['b', 'd'], dtype='<U1')]

Future Work
QuantEcon developers are considering future projects such as adding more equilibrium com-
putation algorithms for N-player games and supporting extensive form games. In addition,
QuantEcon aims to extend its current implementation to other backend libraries like JAX or
other GPU providing libraries to utilize modern computing systems and provide faster execution
speeds.
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