
Pyafscgap.org: Open source multi-modal
Python-based tools for NOAA AFSC RACE GAP
A Samuel Pottinger 1 and Giulia Zarpellon 1

1 University of California, Berkeley, California, United States of America
DOI: 10.21105/joss.05593

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @Kevin-Mattheus-Moerman

Submitted: 01 June 2023
Published: 28 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
NOAA AFSC’s Groundfish Assessment Program produces longitudinal catch data which support
ocean health research and fisheries management (Fisheries, n.d.). These “hauls” report in
what quantities and locations bottom trawl surveys find different marine species along with
environmental conditions at the time and place of observation (Heifetz, 2002). Increasing
usability for communities of diverse programming experience, Pyafscgap.org offers query
language compilation, memory-efficient algorithms for “zero-catch” inference, and interactive
visual analytics for these economically and scientifically important GAP datasets. Altogether,
this research toolset supports investigatory tasks across survey programs’ locations and broadens
access through game and information design.

Statement of need

Pyafscgap.org reduces barriers for use of NOAA AFSC RACE GAP1 data, offering:

• Improved developer usability.
• Memory-efficient algorithms for zero catch inference.
• Zero-code visualization tools.

Altogether, these open source tools extend the reach and approachability of GAP’s multiple
survey programs to support analysis like longitudinal catch per unit effort (CPUE) in context
of environmental changes (Pottinger, 2023b).

Developer usability
Working with these data requires knowledge of tools outside the Python “standard toolset”
like closed-source ORDS query language (“Oracle Rest Data Services,” 2022). While the
afscgap package offers easier access to the official REST service, it also crucially offers ORDS
compilation, documented types, and lazy access to these large datasets. Together, these
tools enable Python developers to efficiently use familiar patterns to interact with these data:
type checking, standard documentation, and compatibility with common Python data-related
libraries.

Record inference
Surveys on their own within the API struggle supporting some investigations as they provide
“presence-only” data (Kenney & Roberson, 2022). For example, the API may readily yield
total mass of Pacific cod but not its geohash-aggregated CPUE (Niemeyer, 2008).

1Groundfish Assessment Program in the Resource Assessment and Conservation Engineering Division of the
National Oceanic and Atmospheric Administration’s Alaska Fisheries Science Center

Pottinger, & Zarpellon. (2023). Pyafscgap.org: Open source multi-modal Python-based tools for NOAA AFSC RACE GAP. Journal of Open
Source Software, 8(86), 5593. https://doi.org/10.21105/joss.05593.

1

https://orcid.org/0000-0002-0458-4985
https://orcid.org/0000-0002-9122-4709
https://doi.org/10.21105/joss.05593
https://github.com/openjournals/joss-reviews/issues/5593
https://github.com/SchmidtDSE/afscgap
https://doi.org/10.5281/zenodo.8091843
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/Kevin-Mattheus-Moerman
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05593


𝐶𝑃𝑈𝐸𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝑚𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝐴𝑠𝑤𝑒𝑝𝑡

Metrics like CPUE need “absence data” or hauls in which the species was not recorded. This
package can efficiently infer those results (Pottinger, 2023b).

Broad accessibility
Though the afscgap Python package makes GAP catch information more accessible, the data’s
size and complexity complicates comparative analysis between species, years, and/or geographic
areas (Pottinger, 2023b). Without deep developer experience, it may still be difficult to get
started even with scientific background. To address a broader audience, this project offers
visualization on top of afscgap with CSV and Python code export as a bridge to further
analysis.

Functions
This project improves accessibility of GAP data and offers approachable tools to kickstart
analysis.

Efficient facade
The afscgap library manages significant complexity to offer a simple familiar interface to
Python developers:

• Lazy “generator iterables” increase accessibility by encapsulating logic for memory-
efficient pagination and “data munging” behind Python-standard iterators (Hunner,
2019).

• Decorators adapt diverse structures to common interfaces in zero catch data, offering
polymorphism that helps to reduce the complexity of code using the library (Shvets,
2023a).

• Providing a single object entry-point into the library, a “facade” frees users from needing
deep understanding of the library’s types and transparently compiles “standard” Python
types to Oracle REST Data Service queries (Shvets, 2023b).

Figure 1: Diagram of afscgap.

Pottinger, & Zarpellon. (2023). Pyafscgap.org: Open source multi-modal Python-based tools for NOAA AFSC RACE GAP. Journal of Open
Source Software, 8(86), 5593. https://doi.org/10.21105/joss.05593.

2

https://doi.org/10.21105/joss.05593


Zero catch inference
“Zero catch” inference enables a broader range of analysis with the following algorithm:

• Lazily paginate while records remain available from the API service.
– Record species and hauls observed from API-returned results.
– Return records as available.

• Lazily generate inferred records after API exhaustion.
– For each species observed in API results, check if it had a record for each haul in a

hauls flat file (Pottinger, 2023c).
– For any hauls without the species, produce a record from the iterator.

Note afscgap performs Python-emulation of ORDS filters on inferred records.

Visualization
These complex data require technical sophistication to navigate and, to increase accessibility,
visualization tools help start temporal, spatial, and species comparisons with deep linking,
coordinated highlighting, separated color channels, summary statistics, and side-by-side display
(Few, 2010).

Figure 2: Visualization screenshot.

To support learning this UI, an optional introduction sequence tutorializes a “real” analysis via
Hayashida design (Brown, 2015; Nutt & Hayashida, 2012):

• Introduction: The tool shows information about Pacific cod with pre-filled controls used
to achieve that analysis gradually fading in, asking the user for minor modifications.

• Development: Using the mechanics introduced moments prior, the tool invites the user
to change the analysis to compare different regions.

• Twist: Enabling overlays on the same display, the user leverages mechanics they just
exercised in a now more complex interface.

• Conclusion: The visualization invites the user to demonstrate skills acquired in a new
problem.

Pottinger, & Zarpellon. (2023). Pyafscgap.org: Open source multi-modal Python-based tools for NOAA AFSC RACE GAP. Journal of Open
Source Software, 8(86), 5593. https://doi.org/10.21105/joss.05593.

3

https://doi.org/10.21105/joss.05593


This visualization also serves as a starting point for continued analysis by generating either
CSV or Python code to take work into other tools.

In addition to use in a graduate classroom setting, five individuals with relevant background
offered feedback on this open source visualization with four aided by a think-aloud prompt2
(Lewis, 1982).

Limitations
As further documented in the repository (Pottinger, 2023a), these tools:

• Run single-threaded and synchronous.
• Aggregate hauls as points in visualization due to data limitation.
• Ignore hauls if entirely excluded by NOAA.

Acknowledgments
Thanks to:

• Runtime dependencies: ColorBrewer, D3, Flask, Geolib, Requests, Toolz, and Papa Parse
(Bostock & Contributors, 2023; Brewer et al., 2013; Holt, 2023; Joy & Rivard, 2021;
Mönnich et al., 2023; Reitz, 2023; Rocklin et al., 2022).

• Library advice: Carl Boettiger, Fernando Perez, and PyOpenSci reviewers.
• Visualization advice: Magali de Bruyn, Brookie Guzder-Williams, Angela Hayes, David

Joy, and Maya Weltman-Fahs.
• Lewis Barnett, Emily Markowitz, and Ciera Martinez for general guidance.
• Draw.io for diagrams (JGraph & draw.io, 2023).

Project of The Eric and Wendy Schmidt Center for Data Science and the Environment at UC
Berkeley.

References
Bostock, M., & Contributors, D. (2023). Data-driven documents 7.8.2. In D3.js. Mike

Bostock. https://d3js.org/

Brewer, C., Harrower, M., Sheesley, B., Woodruff, A., & Heyman, D. (2013). Colorbrewer 2.0.
In ColorBrewer. The Pennsylvania State University. https://colorbrewer2.org

Brown, M. (2015). Super mario 3D world’s 4 step level design. In Game Maker’s Toolkit.
YouTube. https://www.youtube.com/watch?v=dBmIkEvEBtA

Few, S. (2010). Coordinated highlighting in context. In Visual Business Intelligence Newsletter.
Perceptual Edge. https://www.perceptualedge.com/articles/visual_business_intelligence/
coordinated_highlighting_in_context.pdf

Fisheries, N. (n.d.). Groundfish assessment program. National Oceanic; Atmospheric Adminis-
tration. https://www.fisheries.noaa.gov/contact/groundfish-assessment-program

Heifetz, J. (2002). Coral in alaska: Distribution, abundance, and species associations. Hydro-
biologia, 471(1/3), 19–28. https://doi.org/10.1023/a:1016528631593

Holt, M. (2023). Papa parse - powerful CSV parser for JavaScript. In Papa Parse. Matt Holt.
https://www.papaparse.com/

2Discussion limited to tool-specific needs assessment / quality improvement, collecting information about the
tool and not individuals. IRB questionnaire on file finds “project does not constitute human subjects research”
and review is not required.

Pottinger, & Zarpellon. (2023). Pyafscgap.org: Open source multi-modal Python-based tools for NOAA AFSC RACE GAP. Journal of Open
Source Software, 8(86), 5593. https://doi.org/10.21105/joss.05593.

4

https://d3js.org/
https://colorbrewer2.org
https://www.youtube.com/watch?v=dBmIkEvEBtA
https://www.perceptualedge.com/articles/visual_business_intelligence/coordinated_highlighting_in_context.pdf
https://www.perceptualedge.com/articles/visual_business_intelligence/coordinated_highlighting_in_context.pdf
https://www.fisheries.noaa.gov/contact/groundfish-assessment-program
https://doi.org/10.1023/a:1016528631593
https://www.papaparse.com/
https://doi.org/10.21105/joss.05593


Hunner, T. (2019). Lazy looping in python: Making and using generators and iterators. In
Pycon 2019. Python Software Foundation. https://pycon2019.trey.io/index.html

JGraph, & draw.io. (2023). Jgraph/drawio: Draw.io is a JavaScript, client-side editor for
general diagramming and whiteboarding. In GitHub. GitHub, Inc. https://github.com/
jgraph/drawio

Joy, A., & Rivard, É. (2021). Joyanujoy/geolib: Python geohash library. In GitHub. GitHub
Inc. https://github.com/joyanujoy/geolib

Kenney, H., & Roberson, N. (2022). AFSC/race/gap: Racebase database. In InPort. Fisheries
Information System. https://www.fisheries.noaa.gov/inport/item/22008.

Lewis, C. (1982). Using the ”thinking-aloud” method in cognitive interface de-
sign. IBM TJ Watson Research Center. https://dominoweb.draco.res.ibm.com/
2513e349e05372cc852574ec0051eea4.html

Mönnich, A., Ronacher, A., Lord, D., Li, G., Bronson, J., Unterwaditzer, M., Jones, P.,
& Contributors, F. (2023). Welcome to flask. In Pallets Projects. Pallets. https:
//flask.palletsprojects.com/en/2.2.x/

Niemeyer, G. (2008). Geohash.org is public! In Labix Blog. Labix. https://blog.labix.org/
2008/02/26/geohashorg-is-public

Nutt, C., & Hayashida, K. (2012). The structure of fun: Learning from super mario 3D
land’s director. In Game Developer. Informa. https://www.gamedeveloper.com/design/
the-structure-of-fun-learning-from-i-super-mario-3d-land-i-s-director

Oracle rest data services. (2022). In Oracle Help Center. Oracle. https://docs.oracle.com/en/
database/oracle/oracle-rest-data-services/

Pottinger, A. S. (2023a). AFSC GAP viz README.md. In GitHub. GitHub, Inc. https:
//github.com/SchmidtDSE/afscgap/blob/main/afscgapviz/README.md

Pottinger, A. S. (2023b). Cod AFSC GAP example. In MyBinder. The Binder Team. https:
//hub.gke2.mybinder.org/user/schmidtdse-afscgap-ia1m4wd3/notebooks/index.ipynb

Pottinger, A. S. (2023c). Python NOAA AFSC GAP tools (downloads). In AFSC GAP Tools
for Python. University of California Berkeley. https://pyafscgap.org/#downloads

Reitz, K. (2023). HTTP for humans. In Requests. Requests Project. https://docs.
python-requests.org/en/latest/index.html

Rocklin, M., Jacobsen, J., & Contributors, T. (2022). Pytoolz API documentation. In Read
the Docs. Read the Docs, Inc. https://toolz.readthedocs.io/en/latest/

Shvets, A. (2023a). Decorator. In Refactoring.Guru. Refactoring.Guru. https://refactoring.
guru/design-patterns/decorator

Shvets, A. (2023b). Facade. In Refactoring.Guru. Refactoring.Guru. https://refactoring.guru/
design-patterns/facade

Pottinger, & Zarpellon. (2023). Pyafscgap.org: Open source multi-modal Python-based tools for NOAA AFSC RACE GAP. Journal of Open
Source Software, 8(86), 5593. https://doi.org/10.21105/joss.05593.

5

https://pycon2019.trey.io/index.html
https://github.com/jgraph/drawio
https://github.com/jgraph/drawio
https://github.com/joyanujoy/geolib
https://www.fisheries.noaa.gov/inport/item/22008.
https://dominoweb.draco.res.ibm.com/2513e349e05372cc852574ec0051eea4.html
https://dominoweb.draco.res.ibm.com/2513e349e05372cc852574ec0051eea4.html
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://www.gamedeveloper.com/design/the-structure-of-fun-learning-from-i-super-mario-3d-land-i-s-director
https://www.gamedeveloper.com/design/the-structure-of-fun-learning-from-i-super-mario-3d-land-i-s-director
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/
https://github.com/SchmidtDSE/afscgap/blob/main/afscgapviz/README.md
https://github.com/SchmidtDSE/afscgap/blob/main/afscgapviz/README.md
https://hub.gke2.mybinder.org/user/schmidtdse-afscgap-ia1m4wd3/notebooks/index.ipynb
https://hub.gke2.mybinder.org/user/schmidtdse-afscgap-ia1m4wd3/notebooks/index.ipynb
https://pyafscgap.org/#downloads
https://docs.python-requests.org/en/latest/index.html
https://docs.python-requests.org/en/latest/index.html
https://toolz.readthedocs.io/en/latest/
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://doi.org/10.21105/joss.05593

	Summary
	Statement of need
	Developer usability
	Record inference
	Broad accessibility

	Functions
	Efficient facade
	Zero catch inference
	Visualization
	Limitations

	Acknowledgments
	References

