
GaussianRandomFields.jl: A Julia package to generate
and sample from Gaussian random fields
Pieterjan Robbe 1

1 KU Leuven, Belgium
DOI: 10.21105/joss.05595

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @ziyiyin97
• @shahmoradi

Submitted: 27 May 2023
Published: 02 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Random fields are used to represent spatially-varying uncertainty, and are commonly used
as training data in uncertainty quantification and machine learning applications. Gaussian-
RandomFields.jl is a Julia (Bezanson et al., 2017) software package to generate and sample
from Gaussian random fields. It offers support for well-known covariance functions, such as
Gaussian, exponential and Matérn covariances (Bishop & Nasrabadi, 2006; Chiles & Delfiner,
2012; Montero et al., 2015), as well as user-defined covariance structures defined on arbitrary
domains. The package implements most common methods to generate samples from these
random fields, including the Cholesky factorization, the Karhunen-Loève expansion, and the
circulant embedding method (Lord et al., 2014). GaussianRandomFields.jl makes use of Plots.jl
(Christ et al., 2023) to quickly visualize samples of the random fields.

Statement of need
Random fields are used by scientists to describe complex patterns and structures emerging in
nature. They provide a statistical tool for describing a vast amount of different structures found
in various applications such as electronics (Cui & Zhang, 2018), geostatistics (Pirot et al.,
2015), machine learning (Stephenson & Chen, 2006) and cosmology (Chiang & Coles, 2000).
Random fields can be viewed as an extension from random variables to random functions, in the
sense that the random field takes random values at each point in the domain where it is defined.
Gaussian random fields are particularly attractive, because they only require two parameters to
be fully specified: a mean value and a covariance function. GaussianRandomFields.jl provides
Julia implementations of Gaussian random fields with stationary separable and non-separable
isotropic and anisotropic covariance functions. It has been used in a number of recent works,
including (Blondeel et al., 2020), (Robbe et al., 2021) and (Wu et al., 2023).

Other packages for Gaussian random field generation are available in R (Schlather, 2022) and
Python (Müller et al., 2022). GaussianRandomFields.jl offers a native Julia implementation.
As such, it benefits from the performance advantage of Julia, see (Bezanson et al., 2017),
and provides a convenient unified API for different covariance functions by leveraging multiple
dispatch. A particular example are the covariance functions from KernelFunctions.jl, which
can easily be linked to the Gaussian random field generators implemented in this package.

Usage
The full API of GaussianRandomFields.jl is described in detail in the documentation. We also
provide a tutorial with various examples detailing how to define, sample from, and visualize
Gaussian random fields. The following example is an excerpt from the tutorial. We refer to
Figure 1 for an illustration.
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using GaussianRandomFields, Plots

cov = CovarianceFunction(2, Exponential(.5))

pts = range(0, stop=1, length=1001)

grf = GaussianRandomField(cov, CirculantEmbedding(), pts, pts, minpadding=2001)

heatmap(grf)

Figure 1: Three realizations of a two-dimensional Gaussian random field with exponential covariance
function.
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