
Powering single-cell analyses in the browser with
WebAssembly

Aaron Tin Long Lun 1* and Jayaram Kancherla 1*

1 Genentech Inc., South San Francisco, United States of America * These authors contributed equally.
DOI: 10.21105/joss.05603

Software
• Review
• Repository
• Archive

Editor: Aoife Hughes
Reviewers:

• @yongrenjie
• @llewelld

Submitted: 15 May 2023
Published: 05 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We present kana, a web application for interactive single-cell ’omics data analysis in the
browser. Like, literally, in the browser: kana leverages web technologies such as WebAssembly
to efficiently perform the relevant computations on the user’s machine, avoiding the need to
provision and maintain a backend service. The application provides a streamlined one-click
workflow for the main steps in a typical single-cell analysis, starting from a count matrix and
finishing with marker detection. Results are presented in an intuitive web interface for further
exploration and iterative analysis.

Statement of need
Single-cell ’omics is routinely used to identify cell subpopulations with distinct molecular
phenotypes in heterogeneous biological samples (Stegle et al., 2015). For example, in single
cell RNA sequencing (scRNA-seq), cells are clustered based on their transcriptional profiles
and each cluster is characterized based on differential expression of marker genes. Changes
in expression or cellular abundance for each cluster can then provide some insight into the
biological processes associated with the corresponding cell type or state. This analysis is often
exploratory in nature as the properties of an interesting cell subpopulation are difficult to define
a priori. As a result, each analysis involves several iterations of computation, visualization
and interpretation by biologists who may not be familiar with programming frameworks for
bioinformatics.

Web applications offer an ideal environment for single-cell analyses, providing a user-friendly
interface to the analysis workflow without any installation of additional software (other than
a browser). This strategy has been used by tools such as Cellxgene (Megill et al., 2021),
Cirrocumulus (Gould et al., 2021), and a variety of R/Shiny applications (Chang et al., 2021)
for processing single-cell data. The vast majority of these existing web applications use a
traditional server-based architecture, where data is sent to a backend server to compute results
that are returned to the client - i.e., the user’s machine - for inspection. This obviously requires
the deployment of a backend server, which has non-negligible cost when scaled to a large
number of users. It also requires data transfer from the client to the server, which introduces
latency as well as invoking concerns over data ownership and privacy.

An alternative paradigm is to perform all the compute on the client device. This “client-
side compute” circumvents all of the aforementioned issues with a backend server as data
remains local to the user’s machine and is analyzed wholly within the browser. Some existing
web applications have employed this approach for bioinformatics data analysis (Fan et al.,
2017; Gómez et al., 2013; Schmid-Burgk & Hornung, 2015), but these represent a minority
in the application ecosystem. This is not surprising given the paucity of efficient, browser-
compatible implementations of various algorithms required for such analyses. However, new

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

1

https://orcid.org/0000-0002-3564-4813
https://orcid.org/0000-0001-5855-5031
https://doi.org/10.21105/joss.05603
https://github.com/openjournals/joss-reviews/issues/5603
https://github.com/kanaverse/kana
https://doi.org/10.5281/zenodo.8273645
https://www.turing.ac.uk/people/researchers/aoife-hughes
https://orcid.org/0000-0002-4572-5828
https://github.com/yongrenjie
https://github.com/llewelld
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05603


web technologies such as WebAssembly (Haas et al., 2017) have greatly enhanced browsers’
capabilities for intensive computation. If we could generate a WebAssembly (Wasm) binary
containing single-cell analysis functionality, we could feasibly repurpose the browser as a
self-contained interactive data analysis tool for single-cell ’omics.

To this end, we present kana, a web application for analyzing single-cell ‘omics data inside the
browser (https://www.kanaverse.org/kana). kana provides a streamlined one-click workflow for
the main steps in a typical single-cell analysis (Amezquita et al., 2020), starting from a count
matrix (or multiple such matrices, for datasets with multiple modalities and/or samples) and
finishing with marker detection. Users can interactively explore the low-dimensional embeddings,
clusterings and marker genes in an intuitive graphical interface that encourages iterative re-
analysis. Once finished, users can save their analysis and results for later examination or sharing
with collaborators. By using technologies like WebAssembly and web workers, we achieve
high-performance client-side compute for datasets containing hundreds of thousands of cells.

Usage
Given a single-cell dataset - typically for gene expression, but possibly with protein and/or
CRISPR counts - kana executes a routine analysis based on A. T. L. Lun et al. (2020). Users
can supply data in several formats, such as Matrix Market files produced by the Cellranger
pipeline; HDF5 files, using either the 10X HDF5 feature barcode matrix format or as H5AD
files; SummarizedExperiment or SingleCellExperiment objects (Amezquita et al., 2020) saved
to RDS files; or datasets from public repositories like Bioconductor’s ExperimentHub (Morgan
& Shepherd, n.d.). The entire analysis can then be executed with a single click, though users
can easily customize key parameters if desired (Figure 1).

Figure 1: Screenshot showing the analysis configuration panel in the kana application. Clicking “Analyze”
will perform the entire analysis.

Once each step of the analysis is complete, kana visualizes its results in a multi-panel layout
(Figure 2). One panel contains a scatter plot for the low-dimensional embeddings, where each
cell is a point that is colored by cluster identity or gene expression. Another panel contains
a table of marker statistics for a selected cluster, where potential marker genes are ranked

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

2

https://doi.org/10.21105/joss.05603


and filtered according to the magnitude of upregulation over other clusters. Scientists can
use this interface to examine the cellular heterogeneity in the dataset and to determine which
biological processes are most active in each subpopulation. We also provide a gallery to
visualize miscellaneous details such as the distribution of QC metrics.

Figure 2: Screenshot showing the multi-panel layout for results in the kana application. The left panel
is used for the low-dimensional embeddings, the middle panel contains the marker table for a selected
cluster, and the right panel contains a gallery of miscellaneous plots.

Once the analysis is complete, users can export the analysis configuration and results for later
inspection. The exported results can be quickly reloaded in a new browser session, allowing
users or their collaborators to explore existing results without repeating the computation.
Indeed, kana’s “explore-only” mode can be used more generally for single-cell analysis results
in other formats, e.g., to load RDS or H5AD files containing pre-computed clusterings and
low-dimensional embeddings. Similarly, the exported configuration can be used to restore the
analysis session for further parameter tuning and iteration.

From a user perspective, kana’s interface is quite similiar to those of other single-cell web
applications like Cellxgene. In fact, most single-cell user interfaces have very similar layouts
and functionality due to the commonality of the analysis steps and the standardized nature
of the results. kana’s novelty comes from how the analysis is performed - unlike most other
applications, we do not rely on a backend server, but perform the analysis directly on the
user’s machine. Importantly, this is achieved via the browser and does not require installation
of additional software like, e.g., the 10X Genomics Loupe browser.

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

3

https://doi.org/10.21105/joss.05603


Implementation details
We convert the browser into a compute engine by compiling scientific libraries for bioinformatics
data analysis to Wasm - see the biowasm project (Aboukhalil, 2019) for previous efforts in
this direction. For kana, we created C++ implementations of the data representations or
algorithms required for each analysis step:

• tatami (A. Lun, 2021a) provides an abstract interface to different matrix classes, based
on ideas in the beachmat (A. T. L. Lun et al., 2018) and DelayedArray (Pagès et al.,
2021) packages.

• CppWeightedLowess (A. T. L. Lun, 2021h) contains a C++ port of the weightedLowess
function from the limma package (Ritchie et al., 2015), itself derived from R’s LOWESS
implementation (Cleveland, 1979).

• CppIrlba (A. T. L. Lun, 2021d) contains a C++ implementation of the IRLBA algorithm
(James Baglama & Reichel, 2005), based on the C code in the irlba R package (Jim
Baglama et al., 2019).

• CppKmeans (A. T. L. Lun, 2021e) implements the several algorithms for k-means
clustering Su & Dy (2007), based on R’s Fortran code.

• knncolle (A. T. L. Lun, 2021g) wraps several nearest neighbor detection algorithms
(Bernhardsson, 2021; Yianilos, 1993) in a consistent interface, using the same design as
the BiocNeighbors package (A. T. L. Lun, 2021c).

• libscran (A. T. L. Lun, 2021a) implements high-level methods for scRNA-seq data
analysis based on code from the scran, scuttle and scater packages (Aaron T. L. Lun et
al., 2016; McCarthy et al., 2017).

• qdtsne (A. T. L. Lun, 2021f) contains a C++ implementation of the Barnes-Hut t-SNE
algorithm (Maaten, 2014), refactored and optimized from code in the Rtsne package
(Krijthe, 2015).

• umappp (A. T. L. Lun, 2021b) contains a C++ implementation of the UMAP algorithm
(McInnes et al., 2018), derived from code in the uwot R package (Melville, 2021).

• SinglePP (A. T. L. Lun, 2022c) contains a C++ implementation of the SingleR algorithm
for cell type annotation (Aran et al., 2019).

• CppMnnCorrect (A. T. L. Lun, 2022a) implements the MNN method for batch correction
(Haghverdi et al., 2018), loosely based on an existing method from the batchelor package
(A. T. L. Lun & Haghverdi, 2018).

• rds2cpp (A. T. L. Lun, 2022b) provides a RDS file parser/writer as a standalone C++
library.

We compiled these libraries to a Wasm binary using the Emscripten toolchain (Zakai, 2011),
using PThreads to enable parallelization via web workers. We then wrapped the binary in
the scran.js library (A. Lun & Kancherla, 2021) to provide JavaScript bindings for use in
web applications. kana itself was developed using React with extensive use of WebGL for
efficient plotting. Testing indicates that kana is only 25-50% slower than an equivalent native
executable (Table 1), indicating that Wasm’s promise of near-native execution is feasible.

Table 1: Performance of kana for analyzing different scRNA-seq datasets, compared to a native executable
created from the same C++ libraries. Measurements were taken on a laptop with an Intel Core i7-8850H
CPU (2.60GHz, 6 cores) and 32 GB memory running Manjaro Linux. Runtimes are reported in seconds
with the mean and standard error across 3 runs. See A. Lun & Kancherla (2023) for more details.

Dataset Number of cells kana runtime Native runtime
Zeisel et al. (2015) 3005 7.00 ± 0.10 5.60 ± 0.05
Paul et al. (2015) 10368 17.59 ± 0.20 13.52 ± 0.38
Bach et al. (2017) 25806 54.96 ± 1.13 43.33 ± 0.39
Ernst et al. (2019) 68937 157.15 ± 7.39 114.67 ± 1.86
Bacher et al. (2020) 104417 228.02 ± 2.85 170.32 ± 1.34

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

4

https://doi.org/10.21105/joss.05603


Dataset Number of cells kana runtime Native runtime
Zilionis et al. (2019) 173954 272.26 ± 4.22 183.77 ± 2.46

Further comments
kana’s key innovation lies in its use of modern web technologies to perform the analysis directly
in the browser. This eliminates the difficulties of software installation and makes the analysis
accessible to a non-programming audience. At the same time, we retain all the benefits of
client-side operation, namely:

• No dependency on a backend server, which greatly simplifies application deployment
and maintenance for developers. For example, we do not need any monitoring, scaling,
hardening, or other DevOps processes typically associated with a backend architecture.

• No latency from transfer of data and results to/from the server, which yields a more
responsive user experience. In particular, uploads of large data files (up to 1 GB,
depending on the number of cells and sequencing depth) would cause a significant delay.

• No issues with data ownership, enabling users to process sensitive datasets from the
privacy of their own machine. Users are not forced to trust the application maintainers
to correctly handle and secure their datasets on the latter’s server.

• Effectively free compute, as each client brings its own computing power to the application.
No funding is required for a centralized backend, allowing us to pass on those savings to
our users, i.e., kana can be used by anyone for free.

Client-side compute has interesting scalability characteristics compared to a traditional backend
approach. Most obviously, we are constrained by the computational resources available on
the client machine, which limits the size of any single dataset that can be analyzed by a
particular client. From another perspective, though, client-side compute is more scalable as
it automatically distributes analyses of many datasets across any number of machines at no
cost and with no configuration. This is especially relevant for web applications like kana where
the maintainers would otherwise be responsible for provisioning more computing resources to
match user demand.

That said, how do we deal with large datasets? Our C++ implementations mean that we
are not limited to computation in the browser. We can easily provide wrappers to the same
underlying libraries in any client-side framework, e.g., as a command-line tool or as an extension
to existing data science ecosystems (A. Lun, 2021b). Indeed, one could use the wrapped C++
libraries to run large analyses on a sufficiently well-resourced backend, export the results in a
kana-compatible file format, and then serve them to clients for use in kana’s exploration mode.

Acknowledgements
We thank Michael Lawrence, Hector Corrada Bravo and Adrian Waddell for their suggestions
to improve this manuscript.

References
Aboukhalil, R. (2019). Biowasm. https://github.com/biowasm/biowasm

Amezquita, R. A., Lun, A. T. L., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Marini,
F., Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M. L., Huber,
W., Morgan, M., Gottardo, R., & Hicks, S. C. (2020). Orchestrating single-cell analysis with
Bioconductor. Nat Methods, 17 (2), 137–145. https://doi.org/10.1038/s41592-019-0654-x

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

5

https://github.com/biowasm/biowasm
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.21105/joss.05603


Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R. P.,
Wolters, P. J., Abate, A. R., & others. (2019). Reference-based analysis of lung single-cell
sequencing reveals a transitional profibrotic macrophage. Nature Immunology, 20(2),
163–172. https://doi.org/10.1038/s41590-018-0276-y

Bach, K., Pensa, S., Grzelak, M., Hadfield, J., Adams, D. J., Marioni, J. C., & Khaled,
W. T. (2017). Differentiation dynamics of mammary epithelial cells revealed by single-
cell RNA sequencing. Nature Communications, 8(1), 1–11. https://doi.org/10.1038/
s41467-017-02001-5

Bacher, P., Rosati, E., Esser, D., Martini, G. R., Saggau, C., Schiminsky, E., Dargvainiene, J.,
Schröder, I., Wieters, I., Khodamoradi, Y., & others. (2020). Low-avidity CD4+ T cell
responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19.
Immunity, 53(6), 1258–1271.

Baglama, James, & Reichel, L. (2005). Augmented implicitly restarted lanczos bidiagonalization
methods. SIAM Journal on Scientific Computing, 27 (1), 19–42. https://doi.org/10.1137/
04060593X

Baglama, Jim, Reichel, L., & Lewis, B. W. (2019). Irlba: Fast truncated singular value
decomposition and principal components analysis for large dense and sparse matrices.
https://CRAN.R-project.org/package=irlba

Bernhardsson, E. (2021). Annoy. https://github.com/spotify/annoy

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson,
J., Dipert, A., & Borges, B. (2021). Shiny: Web application framework for r. https:
//CRAN.R-project.org/package=shiny

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74(368), 829–836. https://doi.org/10.
1080/01621459.1979.10481038

Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C., & Odom, D. T.
(2019). Staged developmental mapping and X chromosome transcriptional dy-
namics during mouse spermatogenesis. Nature Communications, 10(1), 1–20.
https://doi.org/10.1038/s41467-019-09182-1

Fan, J., Fan, D., Slowikowski, K., Gehlenborg, N., & Kharchenko, P. (2017). UBiT2: A
client-side web-application for gene expression data analysis. bioRxiv, 118992. https:
//doi.org/10.1101/118992

Gómez, J., Garcıá, L. J., Salazar, G. A., Villaveces, J., Gore, S., Garcıá, A., Martıń, M.
J., Launay, G., Alcántara, R., Del-Toro, N., & others. (2013). BioJS: An open source
JavaScript framework for biological data visualization. Bioinformatics, 29(8), 1103–1104.
https://doi.org/10.1093/bioinformatics/btt100

Gould, J., Yang, Y., & Li, B. (2021). Cirrocumulus. https://cirrocumulus.readthedocs.io/en/
latest/

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner,
L., Zakai, A., & Bastien, J. (2017). Bringing the web up to speed with WebAssembly.
SIGPLAN Not., 52(6), 185–200. https://doi.org/10.1145/3140587.3062363

Haghverdi, L., Lun, A. T., Morgan, M. D., & Marioni, J. C. (2018). Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature
Biotechnology, 36(5), 421–427. https://doi.org/10.1038/nbt.4091

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.
https://doi.org/10.2307/2346830

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

6

https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41467-017-02001-5
https://doi.org/10.1038/s41467-017-02001-5
https://doi.org/10.1137/04060593X
https://doi.org/10.1137/04060593X
https://CRAN.R-project.org/package=irlba
https://github.com/spotify/annoy
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1038/s41467-019-09182-1
https://doi.org/10.1101/118992
https://doi.org/10.1101/118992
https://doi.org/10.1093/bioinformatics/btt100
https://cirrocumulus.readthedocs.io/en/latest/
https://cirrocumulus.readthedocs.io/en/latest/
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1038/nbt.4091
https://doi.org/10.2307/2346830
https://doi.org/10.21105/joss.05603


Krijthe, J. H. (2015). Rtsne: T-distributed stochastic neighbor embedding using barnes-hut
implementation. https://github.com/jkrijthe/Rtsne

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489

Lun, A. (2021a). A C++ API for all sorts of matrices. https://github.com/LTLA/tatami

Lun, A. (2021b). A slimmed-down version of scran. https://github.com/LTLA/scran.chan

Lun, A. T. L. (2021a). A C++ library for single-cell data analysis. https://github.com/LTLA/
libscran

Lun, A. T. L. (2021b). A C++ library for UMAP. https://github.com/LTLA/umappp

Lun, A. T. L. (2021c). BiocNeighbors: Nearest neighbor detection for bioconductor packages.
https://bioconductor.org/packages/BiocNeighbors

Lun, A. T. L. (2021d). C++ library for IRLBA. https://github.com/LTLA/CppIrlba

Lun, A. T. L. (2021e). C++ library for k-means. https://github.com/LTLA/CppKmeans

Lun, A. T. L. (2021f). C++ library for t-SNE. https://github.com/LTLA/qdtsne

Lun, A. T. L. (2021g). Collection of KNN algorithms. https://github.com/LTLA/knncolle

Lun, A. T. L. (2021h). Weighted LOWESS for C++. https://github.com/LTLA/
CppWeightedLowess

Lun, A. T. L. (2022a). A C++ implementation of the MNN correction algorithm. https:
//github.com/LTLA/CppMnnCorrect

Lun, A. T. L. (2022b). A C++ library to read and write RDS files. https://github.com/LTLA/
rds2cpp

Lun, A. T. L. (2022c). C++ port of the SingleR method for cell type annotation. https:
//github.com/LTLA/SinglePP

Lun, A. T. L., Amezquita, R. A., Gottardo, R., & Hicks, S. C. (2020). Orchestrating single-cell
analysis with Bioconductor. Bioconductor. https://doi.org/10.1038/s41592-019-0654-x

Lun, A. T. L., & Haghverdi, L. (2018). Single-cell batch correction methods. https://
bioconductor.org/packages/release/bioc/html/batchelor.html

Lun, Aaron T. L., McCarthy, D. J., & Marioni, J. C. (2016). A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res., 5, 2122.
https://doi.org/10.12688/f1000research.9501.2

Lun, A. T. L., Pagès, H., & Smith, M. L. (2018). beachmat: A Bioconductor C++ API for
accessing high-throughput biological data from a variety of R matrix types. PLoS Comput
Biol, 14(5), e1006135. https://doi.org/10.1371/journal.pcbi.1006135

Lun, A., & Kancherla, J. (2021). Single cell RNA-seq analysis in Javascript. https://github.
com/jkanche/scran.js

Lun, A., & Kancherla, J. (2023). Powering single-cell analyses in the browser with WebAssembly.
bioRxiv. https://doi.org/10.1101/2022.03.02.482701

Maaten, L. van der. (2014). Accelerating t-SNE using tree-based algorithms. Journal
of Machine Learning Research, 15(93), 3221–3245. http://jmlr.org/papers/v15/
vandermaaten14a.html

McCarthy, D. J., Campbell, K. R., Lun, A. T. L., & Willis, Q. F. (2017). Scater: Pre-
processing, quality control, normalisation and visualisation of single-cell RNA-seq data in
R. Bioinformatics, 33, 1179–1186. https://doi.org/10.1093/bioinformatics/btw777

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

7

https://github.com/jkrijthe/Rtsne
https://doi.org/10.1109/TIT.1982.1056489
https://github.com/LTLA/tatami
https://github.com/LTLA/scran.chan
https://github.com/LTLA/libscran
https://github.com/LTLA/libscran
https://github.com/LTLA/umappp
https://bioconductor.org/packages/BiocNeighbors
https://github.com/LTLA/CppIrlba
https://github.com/LTLA/CppKmeans
https://github.com/LTLA/qdtsne
https://github.com/LTLA/knncolle
https://github.com/LTLA/CppWeightedLowess
https://github.com/LTLA/CppWeightedLowess
https://github.com/LTLA/CppMnnCorrect
https://github.com/LTLA/CppMnnCorrect
https://github.com/LTLA/rds2cpp
https://github.com/LTLA/rds2cpp
https://github.com/LTLA/SinglePP
https://github.com/LTLA/SinglePP
https://doi.org/10.1038/s41592-019-0654-x
https://bioconductor.org/packages/release/bioc/html/batchelor.html
https://bioconductor.org/packages/release/bioc/html/batchelor.html
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1371/journal.pcbi.1006135
https://github.com/jkanche/scran.js
https://github.com/jkanche/scran.js
https://doi.org/10.1101/2022.03.02.482701
http://jmlr.org/papers/v15/vandermaaten14a.html
http://jmlr.org/papers/v15/vandermaaten14a.html
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.21105/joss.05603


McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform manifold
approximation and projection. The Journal of Open Source Software, 3(29), 861. https:
//doi.org/10.21105/joss.00861

Megill, C., Martin, B., Weaver, C., Bell, S., Prins, L., Badajoz, S., McCandless, B., Pisco, A.
O., Kinsella, M., Griffin, F., Kiggins, J., Haliburton, G., Mani, A., Weiden, M., Dunitz,
M., Lombardo, M., Huang, T., Smith, T., Chambers, S., … Carr, A. (2021). Cellxgene: A
performant, scalable exploration platform for high dimensional sparse matrices. bioRxiv.
https://doi.org/10.1101/2021.04.05.438318

Melville, J. (2021). Uwot: The uniform manifold approximation and projection (UMAP)
method for dimensionality reduction. https://github.com/jlmelville/uwot

Morgan, M., & Shepherd, L. (n.d.). ExperimentHub: Client to access ExperimentHub resources.
https://bioconductor.org/packages/release/bioc/html/ExperimentHub.html

Pagès, H., Hickey, P., & Lun, A. T. L. (2021). DelayedArray: A unified framework for working
transparently with on-disk and -memory array-like datasets. https://bioconductor.org/
packages/DelayedArray

Paul, F., Arkin, Y., Giladi, A., Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Winter, D.,
Lara-Astiaso, D., Gury, M., Weiner, A., & others. (2015). Transcriptional heterogeneity
and lineage commitment in myeloid progenitors. Cell, 163(7), 1663–1677. https://doi.org/
10.1016/j.cell.2015.11.013

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015).
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007

Schmid-Burgk, J. L., & Hornung, V. (2015). BrowserGenome.org: Web-based RNA-seq data
analysis and visualization. Nature Methods, 12(11), 1001–1001. https://doi.org/10.1038/
nmeth.3615

Stegle, O., Teichmann, S. A., & Marioni, J. C. (2015). Computational and analytical
challenges in single-cell transcriptomics. Nature Reviews Genetics, 16(3), 133–145. https:
//doi.org/10.1038/nrg3833

Su, T., & Dy, J. G. (2007). In search of deterministic methods for initializing k-means and
gaussian mixture clustering. Intelligent Data Analysis, 11(4), 319–338. https://doi.org/10.
3233/ida-2007-11402

Vassilvitskii, S., & Arthur, D. (2007). K-means++: The advantages of careful seeding.
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
1027–1035.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in general
metric spaces. Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, 311–321. ISBN: 0898713137

Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript compiler. Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, 301–312. https://doi.org/10.1145/2048147.2048224

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus,
A., Marques, S., Munguba, H., He, L., Betsholtz, C., & others. (2015). Cell types in
the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347 (6226),
1138–1142. https://doi.org/10.1126/science.aaa1934

Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H. D., Kr-
ishnan, I., Maroni, G., Meyerovitz, C. V., Kerwin, C. M., & others. (2019). Single-cell
transcriptomics of human and mouse lung cancers reveals conserved myeloid populations

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

8

https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1101/2021.04.05.438318
https://github.com/jlmelville/uwot
https://bioconductor.org/packages/release/bioc/html/ExperimentHub.html
https://bioconductor.org/packages/DelayedArray
https://bioconductor.org/packages/DelayedArray
https://doi.org/10.1016/j.cell.2015.11.013
https://doi.org/10.1016/j.cell.2015.11.013
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nmeth.3615
https://doi.org/10.1038/nmeth.3615
https://doi.org/10.1038/nrg3833
https://doi.org/10.1038/nrg3833
https://doi.org/10.3233/ida-2007-11402
https://doi.org/10.3233/ida-2007-11402
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.21105/joss.05603


across individuals and species. Immunity, 50(5), 1317–1334. https://doi.org/10.1016/j.
immuni.2019.03.009

Lun, & Kancherla. (2023). Powering single-cell analyses in the browser with WebAssembly. Journal of Open Source Software, 8(89), 5603.
https://doi.org/10.21105/joss.05603.

9

https://doi.org/10.1016/j.immuni.2019.03.009
https://doi.org/10.1016/j.immuni.2019.03.009
https://doi.org/10.21105/joss.05603

	Summary
	Statement of need
	Usage
	Implementation details
	Further comments
	Acknowledgements
	References

