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Summary
Single-cell sequencing methods enable precise characterization of gene expression patterns
in individual cells. However, they may provide inaccurate information about the cell type
composition of samples, as required preprocessing procedures such as tissue dissociation or cell
sorting affect viability of different cell types to varying extent (Erdmann-Pham et al., 2021).
Further, especially in the clinical context, single-cell sequencing of patient samples is currently
not routinely applied because of high cost and required expertise, while bulk sequencing is
more prevalent.

For these reasons, computational deconvolution methods are gaining popularity in basic and
clinical research. Computational deconvolution approaches infer the cell type proportions
constituting a given bulk RNA sample based on separately obtained cell type reference data.
Several computational deconvolution methods have been developed in the last decade and have
contributed to our understanding of tissue composition (Cobos et al., 2020; Sturm et al., 2019).
Generally, during deconvolution, the computational mixture is constructed from a set of cell
type fractions and reference gene expression vectors for each of the participating cell types, most
commonly derived from single-cell data. The cell type fractions are then iteratively changed
until agreement between the in silico gene expression vector and the observed bulk sample
gene expression vector is optimal by a measure of choice. Here, published methods rely almost
exclusively on minimizing the sum of squared residuals between bulk and computationally
mixed vectors. Algorithms for such optimization problems are readily available and include
variants of least squares regression (e.g. weighted least squares regression (Racle et al., 2017),
non-negative least squares regression (Jew et al., 2020; Wang et al., 2019) or least trimmed
squares (Hao et al., 2019)) and support vector regression (Newman et al., 2015, 2019).

However, least squares-based optimization is faced with a particular challenge in bulk RNAseq
deconvolution because of the highly skewed nature of mRNA copy number distributions,
ranging from less than 1 to more than 10,000 average mRNA copies per cell (Li et al., 2016;
Schwanhäusser et al., 2011). In such settings, optimization results may be strongly influenced
by few highly expressed genes and are thus not robust to noise or platform effects influencing
the readout of these genes. Support vector regression based models like CIBERSORT (Newman
et al., 2015) perform gene feature selection out of a user-defined signature gene list, the
contents of which can strongly affect the cell proportion estimates. Overall, identifying the
right genes for deconvolution becomes a task in itself (Aliee & Theis, 2021). As a result,
deconvolution methods may yield inferred mixed gene expression vectors that do not correlate
well with measured bulk gene expression.

Here, we introduce cellanneal, a python-based software for deconvolving bulk RNA sequencing
data. cellanneal relies on the optimization of Spearman’s rank correlation coefficient between
experimental and computational mixture gene expression vectors using simulated annealing.
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Transforming gene expression values into ranks prior to optimization allows genes of different
expression magnitudes to contribute similarly to deconvolution; further, cellanneal employs
a permissive gene selection procedure that includes as many informative genes as possible.
Together, these approaches limit the influence of highly expressed genes on the one hand and
reduce dependency on specific gene list choices. cellanneal can be used as a python package
or via a command line interface, but importantly also provides a simple graphical user interface
which is distributed as a single executable file for user convenience.

Statement of need
Making sense of bulk RNA sequencing datasets often requires analysis of the cell type
composition of the samples. This is particularly relevant in clinical samples that analyze the
transcriptome of tissues or tumors which consist of epithelial, stromal and immune cell types. In
parallel, publicly available single-cell data sets enable precise characterization of the expression
signature of multiple individual cell types. However, software tools for computational bulk
deconvolution are often slow, non-robust and not easy to use. Some existing methods address
the aspect of user-friendliness by providing graphical web interfaces, but submitting sensitive
medical data to an external web server is not always compatible with privacy legislation.

To address these challenges, we have developed cellanneal, a deconvolution approach that
uses Spearman’s rank correlation coefficient between synthetic and bulk gene expression
vectors as the optimization procedure’s objective function. Because this correlation measure is
calculated from ranks rather than absolute data values, each gene influences the optimization
result to a similar extent. Users are encouraged to include as many informative genes as
possible in the analysis. cellanneal optimizes cell type fractions by simulated annealing, a
flexible, rapid and robust algorithm for global optimization (Kirkpatrick et al., 1983; Virtanen
et al., 2020). cellanneal can be used as a python package, via its command line interface or
via a user-friendly graphical software which runs locally. Its typical processing time for one
mixture sample is below one minute on a desktop machine (MacBook Pro 2020, 2.3 GHz
Quad-Core Intel Core i7, 16 GB RAM).

Availability and Features
The python package and command line interface are available at https://github.com/
LiBuchauer/cellanneal and can be installed using pip. The graphical software for Microsoft
Windows and MacOS can be downloaded at http://shalevlab.weizmann.ac.il/resources
and does not require installation. Instructions for installation and use as well as general
documentation is available at https://github.com/LiBuchauer/cellanneal.

The python package provides functions for the three main steps of a deconvolution analysis
with cellanneal: identification of a gene set for deconvolution, deconvolution using simulated
annealing, and plotting the results. A quick start workflow is available as part of the documen-
tation. For the command line interface and the graphical user interface, these three steps are
combined into one call (click).

cellanneal runs which were started from either the command line or the graphical user interface
produce a collection of result files including tabular deconvolution results (cell type fractions
for each sample) and figures illustrating these cell type distributions. Further, cellanneal
computes and stores the gene-wise fold change between the observed bulk expression and the
estimated expression based on the inferred cell type composition. This enables identifying
genes for which expression may be specifically induced or inhibited in the bulk sample compared
to the single cell reference. Such genes may be of biological or medical interest.
Figures produced by cellanneal include a heatmap showing sample compositions (Figure 1),
pie charts showing sample compositions (Figure 2), and scatter plots showing correlation
between experimental bulk gene expression values and their cellanneal-derived counterparts
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from the best identified computational mixture (Figure 3). The examples presented in this
manuscript use data from (Massalha et al., 2020).

Figure 1: A heatmap produced by cellanneal. Constituting cell types are on the y-axis, deconvolved
bulk sample names on the x-axis. The colour scale shows the fractional presence of cell type in each bulk.
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Figure 2: Pie charts produced by cellanneal. Each pie corresponds to one deconvolved bulk sample
from the input data.

Figure 3: Gene correlation scatter plots produced by cellanneal Each panel corresponds to one
deconvolved bulk sample from the input data. Each dot represents a gene used during deconvolution.
The x-axis shows the experimentally measured expression of each gene after normalizing so that the total
count sum is 1. The y-axis shows the normalized expression of each gene in the best identified synthetic
bulk mixed from cell type signature data .

cellanneal relies on the python packages scipy (Virtanen et al., 2020), numpy (Harris et al.,
2020), pandas (Pandas Development Team, 2020), seaborn (Waskom, 2021) and matplotlib

(Hunter, 2007).

Citations
Examples of published research projects using cellanneal include (Egozi et al., 2023) and
(Berková et al., 2022).
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