
ElectricGrid.jl - A Julia-based modeling and simulation
tool for power electronics-driven electric energy grids
Oliver Wallscheid 1, Sebastian Peitz 2, Jan Stenner2, Daniel Weber 1,
Septimus Boshoff1, Marvin Meyer 1, Vikas Chidananda2, and Oliver
Schweins1

1 Chair of Power Electronics and Electrical Drives, Paderborn University, Paderborn, Germany 2 Chair of
Data Science for Engineering, Paderborn University, Paderborn, Germany

DOI: 10.21105/joss.05616

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @kiranshila
• @degleris1

Submitted: 28 April 2023
Published: 02 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The ElectricGrid.jl toolbox provides a transient simulation framework for electric energy grids
based on power electronic converters. With a few lines of code, a parameterised electric grid
model on component level can be initialised in Julia. An example grid is shown in Figure 1.

Figure 1: Exemplary electric energy grid in a simplified single phase representation.

By means of state-space models (set of first order ordinary differential equations), electrical
energy grids can be constructed and simulated in a short time, which can be utilised for
synthetic data generation (e.g., for data-driven meta-modelling) and to compare grid control
methods.

Statement of need
Decentralised, electrical energy networks have special demands on operating and control
procedures to ensure a continuous and efficient energy supply and simultaneously play an
important role in the integration of renewable energy sources (Guerrero et al., 2013). This
applies both in connection with conventional centralised power grids and for islanded microgrids
in remote areas (Lund et al., 2017). Due to their high efficiency and flexibility, power electronic
converters have become the standard tool for integrating renewable energy sources, energy
storages and loads in electrical energy grids. The field of power electronics covers the application
of solid-state electronics to the control and conversion of electric power, which is performed
with semiconductor switching devices such as diodes or power transistors. This includes energy

Wallscheid et al. (2023). ElectricGrid.jl - A Julia-based modeling and simulation tool for power electronics-driven electric energy grids. Journal of
Open Source Software, 8(89), 5616. https://doi.org/10.21105/joss.05616.

1

https://orcid.org/0000-0001-9362-8777
https://orcid.org/0000-0002-3389-793X
https://orcid.org/0000-0003-3367-5998
https://orcid.org/0009-0008-2879-7118
https://doi.org/10.21105/joss.05616
https://github.com/openjournals/joss-reviews/issues/5616
https://github.com/upb-lea/ElectricGrid.jl
https://doi.org/10.5281/zenodo.8297533
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/kiranshila
https://github.com/degleris1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05616


conversion in terms of voltage and current amplitude, frequency and phase angle, as well as
the number of phases between two or more electrical energy systems to be connected.

Controlling (decentralised) electric grids is a challenging task due to their stochastic, heteroge-
neous and volatile characteristics (in particular regarding the connected loads). At the same
time, high requirements are made with regard to aspects such as safety, quality and availability.
This results in a high demand for comprehensive testing of new control concepts during
their development phase and comparisons with the state of the art to ensure their feasibility.
This applies in particular to emerging data-driven control approaches such as reinforcement
learning (RL), the stability and operating behavior of which cannot be evaluated a priori
(Garcıa & Fernández, 2015). Besides RL methods, being data-driven, result in a model-free
and self-adaptive controller design with little human effort labeling them a promising tool for
controlling unknown or changing systems targeting the above described challanges. However,
there is a need for further research into the requirements for energy networks in terms of safety,
robustness and availability before RL-based controllers can be used in real applications (Glavic
et al., 2017; Zhang et al., 2018).

ElectricGrid.jl is a Julia package for setting up realistic electric grid simulations with
support for control options. A number of parameters are made avaible to the user to evaluate
the various control options. If no details are given, all parameters are generated automatically,
either through randomness on a physically meaningful basis or by verified design methods. This
enables both experts from the field of electrical energy networks to test certain configurations
and experts from the field of artificial intelligence to test new control approaches without any
prior knowledge of electrical engineering. Therefore, ElectricGrid.jl is designed to be used
by students, academics, and industrial researchers in the field of simulation and data-driven
analysis of electrical energy systems. The primary objective of the toolbox is to facilitate entry
for new users into the modeling, control, and testing of small to large scale electric power grids
and to provide a platform on which different control methods (including RL) can be compared
under defined conditions (benchmarks).

The experiments are based on dynamic simulations in the time domain which allows for accurate
control and test investigations during transients and steady state down to component level.
This is an essential difference to already available open-source solutions for the simulation of
electrical energy grids like PyPSA (Brown et al., 2017), Powermodels.jl (Coffrin et al., 2018)
and pandapower (Thurner et al., 2018) which, in contrast, usually perform the calculations in
a (quasi)-stationary state. Also these frameworks tend to focus on large-scale power systems
at the transmission and distribution grid level, which does not allow an evaluation of, e.g.,
control on component level in case of load fluctuations in the grid. In addition, a few tools like
the one presented in Lara et al. (2023) already exist in Julia, which offer dynamic simulations.
However, the latter is based on different simplifications (e.g., assumption of a symmetric grid,
fixed frequency, …) and also do not offer an interface to RL toolboxes. To ensure a seamless
integration of the control algorithms, the Gymnasium-based API (Farama-Foundation, 2023)
should be used, which has been established as a standard in recent years. For other projects
implementing the Gymnasium-based API, such as GridAlive (based on Grid2Op (Donnot,
2020)) and ChroniX2Grid (Marot et al., 2020), the focus remains on top-down control and
steady-state models. Therefore, ElectricGrid.jl provides a tool to close these highlighted
gaps.

Interfaces for control and reinforcement learning
The API is designed to provide a user-friendly interface to connect a modeled electric energy
grid with a wide range of classical control methods like shown in Figure 2.

Wallscheid et al. (2023). ElectricGrid.jl - A Julia-based modeling and simulation tool for power electronics-driven electric energy grids. Journal of
Open Source Software, 8(89), 5616. https://doi.org/10.21105/joss.05616.

2

https://doi.org/10.21105/joss.05616


Figure 2: Overview of the functionality and interconnections of the ElectricGrid.jl framework.

Already provided are classic controllers (i.e., industry standard contollers) like linear feedback
proportional integral (PI) in the direct-quadrature-zero (DQ0) rotating reference frame. These
control methods can be used out of the box including automatical tuning procedures. Many
basic auxiliary functionalities for the essential operation of electric power grids are provided
too such as coordinate transformations for basic controller classes, data logging, measurement
of real and imaginary powers, and phase-locked loops for frequency and phase angle extraction.
The interface provided by Tian & contributors (2020) is also available for training data-driven
control approaches like RL. This enables users who want to integrate contemporary open-source
Julia-based RL toolboxes such as ReinforcementLearning.jl (Tian & contributors, 2020).
Following this structure, nearly every control approach, including data-driven RL, can be
implemented and tested with ElectricGrid.jl in a relatively short amount of time.

Features
The ElectricGrid.jl toolbox provides the following key features:

• Framework to set up an experiment with a parameterised energy grid in a few lines of
code.

• Dynamic simulation of electricity grids on component level including single and multi-
phase systems as well as AC and DC operation with arbitrary waveforms.

• Calculation, evaluation and logging of every single time step covering states, action and
auxiliary quantities.

• Large variety of predefined and parameterisable controllers (droop, VSG, swing, active-
reactive) are available.

• Interesting use cases applying data-driven learning.

Wallscheid et al. (2023). ElectricGrid.jl - A Julia-based modeling and simulation tool for power electronics-driven electric energy grids. Journal of
Open Source Software, 8(89), 5616. https://doi.org/10.21105/joss.05616.

3

https://doi.org/10.21105/joss.05616


Examples
For illustration and interactive introduction, Jupyter Notebooks are available for each topic.
These provide clear and easy-to-expand examples of: - Utilising ElectricGrid.jl to build an
energy grid, - Theoretical principles behind the calculations, - Applying classic controllers on
the electrical grid, - Training an RL agent on the electrical grid.

Availability and installation
ElectricGrid.jl is supported and tested on Linux, Windows and macOS. The package should
be installed using the Julia package manager. In a Julia terminal run the follwing:

import Pkg

Pkg.add("ElectricGrid")

Alternatively, it can also be installed from the Github source code. To do that, clone the
repository, start Julia, activate the project by pressing ] to access Pkg mode and then activate

path/to/ElectricGrid or activate . If you started Julia in your ElectricGrid directory and
afterwards run instantiate.

The source code, guide and examples are available on the GitHub repository (https://github.com/upb-
lea/JuliaElectricGrid.jl).

Individual contributions of the authors
Following are shown the main fields of each individual contributor of ElectricGrid.jl:

• O. Wallscheid: Concept design and idea generation, testing and technical feedback,
administrative project management

• S. Peitz: Administrative project management, concept-oriented feedback

• J. Stenner: API RL framework, API environment framework, basic system architecture

• D. Weber: Application examples, API environment framework, basic system architecture,
unit tests

• S. Boshoff: Application examples, primary controllers in DQ0 frame, decentralised
secondary controllers, Luenberger observers, stochastic processes, inverter filter design,
cable design, unit tests

• M. Meyer: Basic system architecture, application examples, unit tests

• V. Chidananda: System analytics, unit tests

• O. Schweins: Basic system architecture

Acknowledgements
The authors would also like to acknowledge the funding and support of this work by the Federal
Ministry of Education and Research of Germany (grant number 011S21064).

References
Brown, T., Hörsch, J., & Schlachtberger, D. (2017). PyPSA: Python for power system analysis.

arXiv Preprint arXiv:1707.09913. https://doi.org/10.5334/jors.188

Wallscheid et al. (2023). ElectricGrid.jl - A Julia-based modeling and simulation tool for power electronics-driven electric energy grids. Journal of
Open Source Software, 8(89), 5616. https://doi.org/10.21105/joss.05616.

4

https://github.com/upb-lea/JuliaElectricGrid.jl/blob/main/examples/notebooks/Env_Create_DEMO.ipynb
https://github.com/upb-lea/JuliaElectricGrid.jl/blob/main/examples/notebooks/Env_Create_DEMO.ipynb
https://github.com/upb-lea/JuliaElectricGrid.jl/blob/main/examples/notebooks/NodeConstructor_Theory_DEMO.ipynb
https://github.com/upb-lea/ElectricGrid.jl/blob/main/examples/notebooks/3_Classical_Controllers_Droop.ipynb
https://github.com/upb-lea/ElectricGrid.jl/blob/main/examples/notebooks/3_Classical_Controllers_Droop.ipynb
https://github.com/upb-lea/ElectricGrid.jl/blob/main/examples/notebooks/RL_Single_Agent_DEMO.ipynb
https://doi.org/10.5334/jors.188
https://doi.org/10.21105/joss.05616


Coffrin, C., Bent, R., Sundar, K., Ng, Y., & Lubin, M. (2018). PowerModels.jl: An open-
source framework for exploring power flow formulations. 2018 Power Systems Computation
Conference (PSCC), 1–8. https://doi.org/10.23919/PSCC.2018.8442948

Donnot, B. (2020). Grid2op- A testbed platform to model sequential decision making in power
systems. . In GitHub repository. https://GitHub.com/rte-france/grid2op; GitHub.

Farama-Foundation. (2023). Farama-foundation/gymnasium: A standard API for single-agent
reinforcement learning environments, with popular reference environments and related
utilities (formerly gym). In GitHub. https://github.com/Farama-Foundation/Gymnasium

Garcıa, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1), 1437–1480.

Glavic, M., Fonteneau, R., & Ernst, D. (2017). Reinforcement learning for electric power
system decision and control: Past considerations and perspectives. IFAC-PapersOnLine,
50. https://doi.org/10.1016/j.ifacol.2017.08.1217

Guerrero, J. M., Chandorkar, M., Lee, T.-L., & Loh, P. C. (2013). Advanced control
architectures for intelligent microgrids—part i: Decentralized and hierarchical control. IEEE
Transactions on Industrial Electronics, 60(4), 1254–1262. https://doi.org/10.1109/TIE.
2012.2194969

Lara, J. D., Henriquez-Auba, R., Ramasubramanian, D., Dhople, S., Callaway, D. S., & Sanders,
S. (2023). Revisiting power systems time-domain simulation methods and models. arXiv
Preprint arXiv:2301.10043. https://doi.org/10.1109/TPWRS.2023.3303291

Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart Energy and Smart
Energy Systems. Energy, 137, 556–565. https://doi.org/10.1016/j.energy.2017.05.123

Marot, A., Megel, N., Renault, V., & Jothy, M. (2020). ChroniX2Grid - The Extensive
PowerGrid Time-serie Generator. In GitHub repository. https://github.com/BDonnot/
ChroniX2Grid; GitHub.

Thurner, L., Scheidler, A., Schäfer, F., Menke, J.-H., Dollichon, J., Meier, F., Meinecke, S.,
& Braun, M. (2018). Pandapower—an open-source python tool for convenient modeling,
analysis, and optimization of electric power systems. IEEE Transactions on Power Systems,
33(6), 6510–6521. https://doi.org/10.1109/TPWRS.2018.2829021

Tian, J., & contributors, other. (2020). ReinforcementLearning.jl: A reinforce-
ment learning package for the Julia programming language. https://github.com/
JuliaReinforcementLearning/ReinforcementLearning.jl

Zhang, D., Han, X., & Deng, C. (2018). Review on the research and practice of deep learning
and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems,
4(3), 362–370. https://doi.org/10.17775/CSEEJPES.2018.00520

Wallscheid et al. (2023). ElectricGrid.jl - A Julia-based modeling and simulation tool for power electronics-driven electric energy grids. Journal of
Open Source Software, 8(89), 5616. https://doi.org/10.21105/joss.05616.

5

https://doi.org/10.23919/PSCC.2018.8442948
https://GitHub.com/rte-france/grid2op
https://github.com/Farama-Foundation/Gymnasium
https://doi.org/10.1016/j.ifacol.2017.08.1217
https://doi.org/10.1109/TIE.2012.2194969
https://doi.org/10.1109/TIE.2012.2194969
https://doi.org/10.1109/TPWRS.2023.3303291
https://doi.org/10.1016/j.energy.2017.05.123
https://github.com/BDonnot/ChroniX2Grid
https://github.com/BDonnot/ChroniX2Grid
https://doi.org/10.1109/TPWRS.2018.2829021
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://doi.org/10.17775/CSEEJPES.2018.00520
https://doi.org/10.21105/joss.05616

	Summary
	Statement of need
	Interfaces for control and reinforcement learning
	Features
	Examples
	Availability and installation
	Individual contributions of the authors
	Acknowledgements
	References

